


Servir des réponses JSON dans les vues Flask
Dans le contexte de Flask, vous recherchez une méthode pour créer une réponse JSON à partir de votre vue qui affichera les résultats d’une fonction d’analyse de données. Pour y parvenir, Flask propose une approche simple.
Réponse directe avec des objets Python
Dans les versions contemporaines de Flask, vous pouvez renvoyer directement un dictionnaire ou une liste Python depuis votre vue. , et Flask le convertira automatiquement en JSON pour la réponse.
@app.route("/summary") def summary(): d = make_summary() return d
JSONify pour les anciennes versions et les versions personnalisées Objets
Pour les anciennes versions de Flask ou lors du renvoi d'un objet personnalisé qui n'est pas nativement sérialisable en JSON, vous pouvez utiliser la fonction jsonify de Flask.
from flask import jsonify @app.route("/summary") def summary(): d = make_summary() return jsonify(d)
Cette approche garantit une conversion transparente de votre données au format JSON, vous permettant de présenter efficacement vos informations analysées dans votre API Flask.
Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!

ForhandlingLargedatasetSInpython, UsenumpyArraysforbetterperformance.1) NumpyArraysAremeMory-EfficientAndFasterFornumericalOperations.2) EvitUnneceSsaryTypeConversions.3) Le effet de levier

Inpython, listSusedynamicMemoryallocation withover-allocation, whileLumpyArraySallocateFixedMemory.1) listsallocatemoreMoryThreededEdededInitialement, redimensipwenessary.2) NumpyArraySallocateExactMemoryForElements, offrantwectable usinessflexibilité.

Inpython, YouCanscthedatatatypeyfelemememedenernSspant.1) usenpynernrump.1) usenpynerp.dloatp.ploatm64, formateur préséconstrolatatype.

NumpyissentialFornumericalComputingInpythondutOtsSpeed, MemoryEfficiency et ComprehenSiveMathematicalFunctions.1) It'sfastBecauseitPerformSoperations INC.2) NumpyArraySareMoremory-EfficientThanpythonlists.3)

ContigusMymoryallocationiscrucialforAraySBauseitallowsforefficient andfastelementAccess.1) iTenablesConstanttimeAccess, o (1), duetoDirectAddressCalculation.2) itimproveScacheefficiendyAllowingMultipleElementFetchesperCacheline.3) itsimplieniesMemorymorymorymorymorymory

SlitingyPapyThonListIsDoneUsingTheSyntaxList [Démarrage: arrêt: étape] .He'showitworks: 1) startisheindexofthefirStelementoinclude.2) stopisTheIndexoftheFirstelementsoexclude.3) StepistheincrementBetweenselans.it'susefulfactingPortationSoListShsandCanusegeg

NumpyAllowsForvariousOperations ONARRAYS: 1) BasicarithmeticLikeaddition, Soustraction, Multiplication, anddivision; 2) AdvancedOperationSuchasmatrixMultiplication; 3) Element-Wiseoperations withoutExplicitloop

ArraySinpython, en particulier ThroughNumpyandPandas, aressentialfordataanalysis, offingspeeedAfficiency.1) numpyarrayablefficienthandlingoflargedatasetsandComplexOperationsLikEMoVingAverages.2)


Outils d'IA chauds

Undresser.AI Undress
Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover
Outil d'IA en ligne pour supprimer les vêtements des photos.

Undress AI Tool
Images de déshabillage gratuites

Clothoff.io
Dissolvant de vêtements AI

Video Face Swap
Échangez les visages dans n'importe quelle vidéo sans effort grâce à notre outil d'échange de visage AI entièrement gratuit !

Article chaud

Outils chauds

Dreamweaver CS6
Outils de développement Web visuel

PhpStorm version Mac
Le dernier (2018.2.1) outil de développement intégré PHP professionnel

Version Mac de WebStorm
Outils de développement JavaScript utiles

Bloc-notes++7.3.1
Éditeur de code facile à utiliser et gratuit

Télécharger la version Mac de l'éditeur Atom
L'éditeur open source le plus populaire
