


Agrégation dans Pandas
Avec Pandas, vous pouvez effectuer diverses opérations d'agrégation pour réduire la dimensionnalité et résumer les données.
Question 1 : Comment puis-je effectuer une agrégation avec Pandas ?
Pandas fournit de nombreuses fonctions d'agrégation, notamment Mean(), sum(), count(), min() et max(). Vous pouvez utiliser ces fonctions pour calculer des statistiques récapitulatives pour chaque groupe. Par exemple :
# Calculate mean of each group based on 'A' and 'B' columns df1 = df.groupby(['A', 'B']).mean() # Print the results print(df1)
Question 2 : Pas de DataFrame après agrégation ! Que s'est-il passé ?
Lorsque vous appliquez l'agrégation à plusieurs colonnes, l'objet résultant peut être une série ou un DataFrame en fonction du nombre de colonnes regroupées.
- Série : Si vous regroupez par une ou plusieurs colonnes, le résultat est une Série avec un index correspondant au groupes.
- DataFrame : Si vous regroupez par une seule colonne, le résultat est un DataFrame avec des colonnes correspondant aux colonnes d'origine.
Pour obtenir un DataFrame avec toutes les colonnes, utilisez as_index=False dans la fonction groupby.
Question 3 : Comment puis-je agréger principalement colonnes de chaînes (vers des listes, des tuples, des chaînes avec séparateur) ?
Pour agréger des colonnes de chaînes, vous pouvez utiliser des opérations de liste, de tuple ou de jointure.
- Liste : Convertissez la colonne en liste en utilisant list() ou GroupBy.apply(list).
- Tuple : Convertissez la colonne en tuple à l'aide de tuple() ou GroupBy.apply(tuple).
- String avec separator : Combinez les chaînes avec un séparateur en utilisant str.join().
Pour exemple :
# Convert 'B' column values to a list for each group df1 = df.groupby('A')['B'].agg(list).reset_index() # Combine 'B' column values into a string with separator for each group df2 = df.groupby('A')['B'].agg(','.join).reset_index()
Question 4 : Comment puis-je agréger les comptes ?
Pour compter les valeurs non manquantes dans chaque groupe, utilisez GroupBy.count(). Pour compter toutes les valeurs, y compris celles manquantes, utilisez GroupBy.size().
Par exemple :
# Count non-missing values in 'C' column for each group df1 = df.groupby('A')['C'].count().reset_index(name='COUNT') # Count all values in 'A' column for each group df2 = df.groupby('A').size().reset_index(name='COUNT')
Question 5 : Comment puis-je créer une nouvelle colonne remplie de valeurs agrégées ?
Vous pouvez ajouter une nouvelle colonne contenant les valeurs agrégées en utilisant la méthode transform(). La fonction transform() applique l'opération spécifiée à chaque groupe et renvoie un nouvel objet de la même taille que l'original.
Par exemple :
# Create a new 'C1' column with the sum of 'C' grouped by 'A' df['C1'] = df.groupby('A')['C'].transform('sum')
Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!

Pythonusahybridmodelofcompilation et interprétation: 1) thepythoninterpreterCompileSourCodeIntOplatform-indépendantBytecode.2) thepythonvirtualmachine (pvm) there examenesthisbytecode, équilibrage de l'usage de la performance.

Pythonisbothinterpretedand compiled.1) il est composédToByteCodeForportabilityAcrosplatforms.2) theytecodeisthenter interprété, permettant à OrdayNamictypingAndRapidDevelopment, bien que MaybeSlowerSlowerSwower, aisance.

Forloopsareideal quand vous savez que l'immatriculation des adressages a une avance, tandis que ce qui est de savoir si

Forloopsaseesesed whenthenUmberoFitations dissownininadvance, tandis que celle-ci a été utilisé sur les éléments de la dispense

Pythonisnotpurelyinterpreted; itusahybridapproachofbytecocecompilation andruntimeinterpretation.1) pythoncompilessourcecodeintoBytecode, whichStHenexEcutedythepythonVirtualMachine (pvm) .2)

ToconcaténateListSinpythonWithTheSameElements, Utilisation: 1) L'opératorTokeEpDuplicate, 2) ASETTOREMOVEUPLICATION, OR3) ListComprehensionfor pour la réduction de la réduction de la manière dont les directives.

PythonisaninterpretedLanguage, offrant une volonté et une flexibilité de la fin

UseforloopswhenthenUmberoFitationsknowninadvance, andwhileloopswHeniterationsDepenSonacondition.1) forloopsareidealforseenceslikelistsorranges.2) whileLoopsSuitscenarioswheretheloopContiesUnUesUsUlaspecificconditMetmecemet, utilesforUSERIRSURSoralgorititititititititititititititititittorititititititittorititititititititittorititititititititittoritititititititititititititititititittitititititititititititititititititittitititititititititititititititititittitititititititititititititititititittititititititititititititititititittititet


Outils d'IA chauds

Undresser.AI Undress
Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover
Outil d'IA en ligne pour supprimer les vêtements des photos.

Undress AI Tool
Images de déshabillage gratuites

Clothoff.io
Dissolvant de vêtements AI

Video Face Swap
Échangez les visages dans n'importe quelle vidéo sans effort grâce à notre outil d'échange de visage AI entièrement gratuit !

Article chaud

Outils chauds

Version Mac de WebStorm
Outils de développement JavaScript utiles

SublimeText3 version chinoise
Version chinoise, très simple à utiliser

mPDF
mPDF est une bibliothèque PHP qui peut générer des fichiers PDF à partir de HTML encodé en UTF-8. L'auteur original, Ian Back, a écrit mPDF pour générer des fichiers PDF « à la volée » depuis son site Web et gérer différentes langues. Il est plus lent et produit des fichiers plus volumineux lors de l'utilisation de polices Unicode que les scripts originaux comme HTML2FPDF, mais prend en charge les styles CSS, etc. et présente de nombreuses améliorations. Prend en charge presque toutes les langues, y compris RTL (arabe et hébreu) et CJK (chinois, japonais et coréen). Prend en charge les éléments imbriqués au niveau du bloc (tels que P, DIV),

SublimeText3 version Mac
Logiciel d'édition de code au niveau de Dieu (SublimeText3)

PhpStorm version Mac
Le dernier (2018.2.1) outil de développement intégré PHP professionnel
