recherche
Maisondéveloppement back-endTutoriel PythonCréation d'applications LLM intelligentes avec des chaînes conditionnelles - Une plongée approfondie

Building Intelligent LLM Applications with Conditional Chains - A Deep Dive

TL;DR

  • Maîtriser les stratégies de routage dynamique dans les applications LLM
  • Implémenter des mécanismes robustes de gestion des erreurs
  • Construire un système de traitement de contenu multilingue pratique
  • Découvrez les meilleures pratiques en matière de stratégies de dégradation

Comprendre le routage dynamique

Dans les applications LLM complexes, différentes entrées nécessitent souvent des chemins de traitement différents. Le routage dynamique aide :

  • Optimiser l'utilisation des ressources
  • Améliorer la précision des réponses
  • Améliorer la fiabilité du système
  • Contrôler les coûts de traitement

Conception de stratégie de routage

1. Composants de base

from langchain.chains import LLMChain
from langchain.prompts import ChatPromptTemplate
from langchain.output_parsers import PydanticOutputParser
from pydantic import BaseModel, Field
from typing import Optional, List
import asyncio

class RouteDecision(BaseModel):
    route: str = Field(description="The selected processing route")
    confidence: float = Field(description="Confidence score of the decision")
    reasoning: str = Field(description="Explanation for the routing decision")

class IntelligentRouter:
    def __init__(self, routes: List[str]):
        self.routes = routes
        self.parser = PydanticOutputParser(pydantic_object=RouteDecision)
        self.route_prompt = ChatPromptTemplate.from_template(
            """Analyze the following input and decide the best processing route.
            Available routes: {routes}
            Input: {input}
            {format_instructions}
            """
        )

2. Logique de sélection d'itinéraire

    async def decide_route(self, input_text: str) -> RouteDecision:
        prompt = self.route_prompt.format(
            routes=self.routes,
            input=input_text,
            format_instructions=self.parser.get_format_instructions()
        )

        chain = LLMChain(
            llm=self.llm,
            prompt=self.route_prompt
        )

        result = await chain.arun(input=input_text)
        return self.parser.parse(result)

Cas pratique : système de contenu multilingue

1. Architecture du système

class MultiLangProcessor:
    def __init__(self):
        self.router = IntelligentRouter([
            "translation",
            "summarization",
            "sentiment_analysis",
            "content_moderation"
        ])
        self.processors = {
            "translation": TranslationChain(),
            "summarization": SummaryChain(),
            "sentiment_analysis": SentimentChain(),
            "content_moderation": ModerationChain()
        }

    async def process(self, content: str) -> Dict:
        try:
            route = await self.router.decide_route(content)
            if route.confidence 



<h3>
  
  
  2. Implémentation de la gestion des erreurs
</h3>



<pre class="brush:php;toolbar:false">class ErrorHandler:
    def __init__(self):
        self.fallback_llm = ChatOpenAI(
            model_name="gpt-3.5-turbo",
            temperature=0.3
        )
        self.retry_limit = 3
        self.backoff_factor = 1.5

    async def handle_error(
        self, 
        error: Exception, 
        context: Dict
    ) -> Dict:
        error_type = type(error).__name__

        if error_type in self.error_strategies:
            return await self.error_strategies[error_type](
                error, context
            )

        return await self.default_error_handler(error, context)

    async def retry_with_backoff(
        self, 
        func, 
        *args, 
        **kwargs
    ):
        for attempt in range(self.retry_limit):
            try:
                return await func(*args, **kwargs)
            except Exception as e:
                if attempt == self.retry_limit - 1:
                    raise e
                await asyncio.sleep(
                    self.backoff_factor ** attempt
                )

Exemples de stratégies de dégradation

1. Modèle de chaîne de repli

class ModelFallbackChain:
    def __init__(self):
        self.models = [
            ChatOpenAI(model_name="gpt-4"),
            ChatOpenAI(model_name="gpt-3.5-turbo"),
            ChatOpenAI(model_name="gpt-3.5-turbo-16k")
        ]

    async def run_with_fallback(
        self, 
        prompt: str
    ) -> Optional[str]:
        for model in self.models:
            try:
                return await self.try_model(model, prompt)
            except Exception as e:
                continue

        return await self.final_fallback(prompt)

2. Stratégie de regroupement de contenu

class ChunkingStrategy:
    def __init__(self, chunk_size: int = 1000):
        self.chunk_size = chunk_size

    def chunk_content(
        self, 
        content: str
    ) -> List[str]:
        # Implement smart content chunking
        return [
            content[i:i + self.chunk_size]
            for i in range(0, len(content), self.chunk_size)
        ]

    async def process_chunks(
        self, 
        chunks: List[str]
    ) -> List[Dict]:
        results = []
        for chunk in chunks:
            try:
                result = await self.process_single_chunk(chunk)
                results.append(result)
            except Exception as e:
                results.append(self.handle_chunk_error(e, chunk))
        return results

Meilleures pratiques et recommandations

  1. Principes de conception d'itinéraires

    • Gardez les itinéraires ciblés et spécifiques
    • Mettre en œuvre des chemins de secours clairs
    • Surveiller les métriques de performances des itinéraires
  2. Directives de gestion des erreurs

    • Mettre en œuvre des stratégies de repli graduées
    • Enregistrer les erreurs de manière exhaustive
    • Configurer des alertes en cas de pannes critiques
  3. Optimisation des performances

    • Cache les décisions de routage courantes
    • Mettre en œuvre le traitement simultané lorsque cela est possible
    • Surveiller et ajuster les seuils de routage

Conclusion

Les chaînes conditionnelles sont cruciales pour créer des applications LLM robustes. Points clés à retenir :

  • Concevoir des stratégies de routage claires
  • Mettre en œuvre une gestion complète des erreurs
  • Planifier des scénarios de dégradation
  • Surveiller et optimiser les performances

Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!

Déclaration
Le contenu de cet article est volontairement contribué par les internautes et les droits d'auteur appartiennent à l'auteur original. Ce site n'assume aucune responsabilité légale correspondante. Si vous trouvez un contenu suspecté de plagiat ou de contrefaçon, veuillez contacter admin@php.cn
Merger des listes dans Python: Choisir la bonne méthodeMerger des listes dans Python: Choisir la bonne méthodeMay 14, 2025 am 12:11 AM

TomegelistSinpython, vous pouvez faire l'opérateur, ExtendMethod, ListComprehension, oriteroTools.chain, chacun avec des avantages spécifiques: 1) l'opératorissimplebutlessoficiesivetforlatelists; 2) ExtendisMemory-EfficientButmodifiestheoriginallist; 3)

Comment concaténer deux listes dans Python 3?Comment concaténer deux listes dans Python 3?May 14, 2025 am 12:09 AM

Dans Python 3, deux listes peuvent être connectées via une variété de méthodes: 1) Utiliser l'opérateur, qui convient aux petites listes, mais est inefficace pour les grandes listes; 2) Utiliser la méthode Extende, qui convient aux grandes listes, avec une efficacité de mémoire élevée, mais modifiera la liste d'origine; 3) Utiliser * l'opérateur, qui convient à la fusion de plusieurs listes, sans modifier la liste originale; 4) Utilisez Itertools.chain, qui convient aux grands ensembles de données, avec une efficacité de mémoire élevée.

Chaînes de liste de concaténate pythonChaînes de liste de concaténate pythonMay 14, 2025 am 12:08 AM

L'utilisation de la méthode join () est le moyen le plus efficace de connecter les chaînes à partir des listes de Python. 1) Utilisez la méthode join () pour être efficace et facile à lire. 2) Le cycle utilise les opérateurs de manière inefficace pour les grandes listes. 3) La combinaison de la compréhension de la liste et de la jointure () convient aux scénarios qui nécessitent une conversion. 4) La méthode Reduce () convient à d'autres types de réductions, mais est inefficace pour la concaténation des cordes. La phrase complète se termine.

Exécution de Python, qu'est-ce que c'est?Exécution de Python, qu'est-ce que c'est?May 14, 2025 am 12:06 AM

PythonexecutionistheprocessoftransformingpythoncodeintoexecuableInstructions.1) the IntrepreterredSthecode, convertingitintoStecode, quithepythonvirtualmachine (pvm)

Python: quelles sont les principales caractéristiquesPython: quelles sont les principales caractéristiquesMay 14, 2025 am 12:02 AM

Les caractéristiques clés de Python incluent: 1. La syntaxe est concise et facile à comprendre, adaptée aux débutants; 2. Système de type dynamique, améliorant la vitesse de développement; 3. Rich Standard Library, prenant en charge plusieurs tâches; 4. Community et écosystème solide, fournissant un soutien approfondi; 5. Interprétation, adaptée aux scripts et au prototypage rapide; 6. Support multi-paradigme, adapté à divers styles de programmation.

Python: compilateur ou interprète?Python: compilateur ou interprète?May 13, 2025 am 12:10 AM

Python est une langue interprétée, mais elle comprend également le processus de compilation. 1) Le code Python est d'abord compilé en bytecode. 2) ByteCode est interprété et exécuté par Python Virtual Machine. 3) Ce mécanisme hybride rend Python à la fois flexible et efficace, mais pas aussi rapide qu'une langue entièrement compilée.

Python pour Loop vs While Loop: Quand utiliser lequel?Python pour Loop vs While Loop: Quand utiliser lequel?May 13, 2025 am 12:07 AM

Usaforloopwheniterating aepasquenceorfor pourpascific inumberoftimes; useawhileloopwencontinTutuntutilaconditioniseMet.ForloopsareIdealForkNown séquences, tandis que celle-ci, ce qui est en train de réaliser des étages.

Python Loops: les erreurs les plus courantesPython Loops: les erreurs les plus courantesMay 13, 2025 am 12:07 AM

PythonloopscanleadtoerrorlikeInfiniteLoops, modificationlistDuringiteration, off-by-by-oneerrors, zéro-indexingisss et intestloopinefficisecy.toavoid this: 1) use'i

See all articles

Outils d'IA chauds

Undresser.AI Undress

Undresser.AI Undress

Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover

AI Clothes Remover

Outil d'IA en ligne pour supprimer les vêtements des photos.

Undress AI Tool

Undress AI Tool

Images de déshabillage gratuites

Clothoff.io

Clothoff.io

Dissolvant de vêtements AI

Video Face Swap

Video Face Swap

Échangez les visages dans n'importe quelle vidéo sans effort grâce à notre outil d'échange de visage AI entièrement gratuit !

Article chaud

<🎜>: Bubble Gum Simulator Infinity - Comment obtenir et utiliser les clés royales
4 Il y a quelques semainesBy尊渡假赌尊渡假赌尊渡假赌
Nordhold: Système de fusion, expliqué
4 Il y a quelques semainesBy尊渡假赌尊渡假赌尊渡假赌
Mandragora: Whispers of the Witch Tree - Comment déverrouiller le grappin
3 Il y a quelques semainesBy尊渡假赌尊渡假赌尊渡假赌

Outils chauds

SublimeText3 version anglaise

SublimeText3 version anglaise

Recommandé : version Win, prend en charge les invites de code !

Listes Sec

Listes Sec

SecLists est le compagnon ultime du testeur de sécurité. Il s'agit d'une collection de différents types de listes fréquemment utilisées lors des évaluations de sécurité, le tout en un seul endroit. SecLists contribue à rendre les tests de sécurité plus efficaces et productifs en fournissant facilement toutes les listes dont un testeur de sécurité pourrait avoir besoin. Les types de listes incluent les noms d'utilisateur, les mots de passe, les URL, les charges utiles floues, les modèles de données sensibles, les shells Web, etc. Le testeur peut simplement extraire ce référentiel sur une nouvelle machine de test et il aura accès à tous les types de listes dont il a besoin.

Navigateur d'examen sécurisé

Navigateur d'examen sécurisé

Safe Exam Browser est un environnement de navigation sécurisé permettant de passer des examens en ligne en toute sécurité. Ce logiciel transforme n'importe quel ordinateur en poste de travail sécurisé. Il contrôle l'accès à n'importe quel utilitaire et empêche les étudiants d'utiliser des ressources non autorisées.

Télécharger la version Mac de l'éditeur Atom

Télécharger la version Mac de l'éditeur Atom

L'éditeur open source le plus populaire

Bloc-notes++7.3.1

Bloc-notes++7.3.1

Éditeur de code facile à utiliser et gratuit