


Comment puis-je filtrer un DataFrame Pandas en fonction de la correspondance de sous-chaînes ?
Filtrage de sous-chaînes Pandas DataFrame
Le filtrage d'un DataFrame pandas basé sur des correspondances de chaînes partielles est une tâche courante de manipulation de données. Pour atteindre cet objectif, les méthodes de chaînes vectorisées, introduites dans la version 0.8.1 de pandas, offrent une solution élégante.
Contrairement à l'approche traditionnelle consistant à utiliser des expressions régulières (par exemple, re.search() pour vérifier des cellules individuelles, les méthodes de chaînes vectorisées Les méthodes de chaîne permettent des opérations efficaces sur des colonnes entières. Par exemple, pour sélectionner les lignes où la colonne « A » contient la sous-chaîne « bonjour », vous pouvez utiliser ce qui suit. code:
df[df['A'].str.contains("hello")]
Cette syntaxe exploite l'attribut str de l'objet Series, qui fournit une gamme de fonctionnalités de manipulation de chaînes. La méthode contain() renvoie un masque booléen indiquant si chaque élément de la colonne « A ». contient la sous-chaîne spécifiée. Le masque résultant est ensuite utilisé pour filtrer le DataFrame, en sélectionnant uniquement les lignes qui répondent aux critères.
Cette méthode offre un moyen concis et efficace d'effectuer une correspondance de chaîne partielle dans les pandas. DataFrames, rationalisant les opérations de filtrage des données.
Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!

TomegelistSinpython, vous pouvez faire l'opérateur, ExtendMethod, ListComprehension, oriteroTools.chain, chacun avec des avantages spécifiques: 1) l'opératorissimplebutlessoficiesivetforlatelists; 2) ExtendisMemory-EfficientButmodifiestheoriginallist; 3)

Dans Python 3, deux listes peuvent être connectées via une variété de méthodes: 1) Utiliser l'opérateur, qui convient aux petites listes, mais est inefficace pour les grandes listes; 2) Utiliser la méthode Extende, qui convient aux grandes listes, avec une efficacité de mémoire élevée, mais modifiera la liste d'origine; 3) Utiliser * l'opérateur, qui convient à la fusion de plusieurs listes, sans modifier la liste originale; 4) Utilisez Itertools.chain, qui convient aux grands ensembles de données, avec une efficacité de mémoire élevée.

L'utilisation de la méthode join () est le moyen le plus efficace de connecter les chaînes à partir des listes de Python. 1) Utilisez la méthode join () pour être efficace et facile à lire. 2) Le cycle utilise les opérateurs de manière inefficace pour les grandes listes. 3) La combinaison de la compréhension de la liste et de la jointure () convient aux scénarios qui nécessitent une conversion. 4) La méthode Reduce () convient à d'autres types de réductions, mais est inefficace pour la concaténation des cordes. La phrase complète se termine.

PythonexecutionistheprocessoftransformingpythoncodeintoexecuableInstructions.1) the IntrepreterredSthecode, convertingitintoStecode, quithepythonvirtualmachine (pvm)

Les caractéristiques clés de Python incluent: 1. La syntaxe est concise et facile à comprendre, adaptée aux débutants; 2. Système de type dynamique, améliorant la vitesse de développement; 3. Rich Standard Library, prenant en charge plusieurs tâches; 4. Community et écosystème solide, fournissant un soutien approfondi; 5. Interprétation, adaptée aux scripts et au prototypage rapide; 6. Support multi-paradigme, adapté à divers styles de programmation.

Python est une langue interprétée, mais elle comprend également le processus de compilation. 1) Le code Python est d'abord compilé en bytecode. 2) ByteCode est interprété et exécuté par Python Virtual Machine. 3) Ce mécanisme hybride rend Python à la fois flexible et efficace, mais pas aussi rapide qu'une langue entièrement compilée.

Usaforloopwheniterating aepasquenceorfor pourpascific inumberoftimes; useawhileloopwencontinTutuntutilaconditioniseMet.ForloopsareIdealForkNown séquences, tandis que celle-ci, ce qui est en train de réaliser des étages.

PythonloopscanleadtoerrorlikeInfiniteLoops, modificationlistDuringiteration, off-by-by-oneerrors, zéro-indexingisss et intestloopinefficisecy.toavoid this: 1) use'i


Outils d'IA chauds

Undresser.AI Undress
Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover
Outil d'IA en ligne pour supprimer les vêtements des photos.

Undress AI Tool
Images de déshabillage gratuites

Clothoff.io
Dissolvant de vêtements AI

Video Face Swap
Échangez les visages dans n'importe quelle vidéo sans effort grâce à notre outil d'échange de visage AI entièrement gratuit !

Article chaud

Outils chauds

Dreamweaver Mac
Outils de développement Web visuel

SublimeText3 version anglaise
Recommandé : version Win, prend en charge les invites de code !

ZendStudio 13.5.1 Mac
Puissant environnement de développement intégré PHP

Envoyer Studio 13.0.1
Puissant environnement de développement intégré PHP

Dreamweaver CS6
Outils de développement Web visuel
