recherche
Maisondéveloppement back-endTutoriel PythonTutoriel détaillé : Exploration des dossiers du référentiel GitHub sans API

Detailed Tutorial: Crawling GitHub Repository Folders Without API

Tutoriel ultra-détaillé : Exploration des dossiers du référentiel GitHub sans API

Ce tutoriel ultra-détaillé, rédigé par Shpetim Haxhiu, vous guide tout au long de l'exploration des dossiers du référentiel GitHub par programmation sans recourir à l'API GitHub. Il comprend tout, de la compréhension de la structure à la fourniture d'une implémentation robuste et récursive avec des améliorations.


1. Configuration et installation

Avant de commencer, assurez-vous d'avoir :

  1. Python : Version 3.7 ou supérieure installée.
  2. Bibliothèques : Demandes d'installation et BeautifulSoup.
   pip install requests beautifulsoup4
  1. Éditeur : tout IDE pris en charge par Python, tel que VS Code ou PyCharm.

2. Analyse de la structure HTML de GitHub

Pour récupérer les dossiers GitHub, vous devez comprendre la structure HTML d'une page de référentiel. Sur une page du référentiel GitHub :

  • Les Les dossiers sont liés à des chemins tels que /tree//.
  • Les Fichiers sont liés avec des chemins tels que /blob//.

Chaque élément (dossier ou fichier) se trouve dans un

avec l'attribut role="rowheader" et contient un étiqueter. Par exemple :
<div role="rowheader">
  <a href="/owner/repo/tree/main/folder-name">folder-name</a>
</div>

3. Implémentation du Scraper

3.1. Fonction d'exploration récursive

Le script grattera récursivement les dossiers et imprimera leur structure. Pour limiter la profondeur de récursion et éviter une charge inutile, nous utiliserons un paramètre de profondeur.

import requests
from bs4 import BeautifulSoup
import time

def crawl_github_folder(url, depth=0, max_depth=3):
    """
    Recursively crawls a GitHub repository folder structure.

    Parameters:
    - url (str): URL of the GitHub folder to scrape.
    - depth (int): Current recursion depth.
    - max_depth (int): Maximum depth to recurse.
    """
    if depth > max_depth:
        return

    headers = {"User-Agent": "Mozilla/5.0"}
    response = requests.get(url, headers=headers)

    if response.status_code != 200:
        print(f"Failed to access {url} (Status code: {response.status_code})")
        return

    soup = BeautifulSoup(response.text, 'html.parser')

    # Extract folder and file links
    items = soup.select('div[role="rowheader"] a')

    for item in items:
        item_name = item.text.strip()
        item_url = f"https://github.com{item['href']}"

        if '/tree/' in item_url:
            print(f"{'  ' * depth}Folder: {item_name}")
            crawl_github_folder(item_url, depth + 1, max_depth)
        elif '/blob/' in item_url:
            print(f"{'  ' * depth}File: {item_name}")

# Example usage
if __name__ == "__main__":
    repo_url = "https://github.com/<owner>/<repo>/tree/<branch>/<folder>"
    crawl_github_folder(repo_url)
</folder></branch></repo></owner>

4. Fonctionnalités expliquées

  1. En-têtes de requête : Utilisation d'une chaîne User-Agent pour imiter un navigateur et éviter le blocage.
  2. Exploration récursive :
    • Détecte les dossiers (/tree/) et les saisit de manière récursive.
    • Liste les fichiers (/blob/) sans entrer davantage.
  3. Indentation : reflète la hiérarchie des dossiers dans la sortie.
  4. Limitation de profondeur : empêche une récursion excessive en définissant une profondeur maximale (max_degree).

5. Améliorations

Ces améliorations sont conçues pour améliorer la fonctionnalité et la fiabilité du robot d'exploration. Ils répondent à des défis courants tels que l'exportation des résultats, la gestion des erreurs et le contournement des limites de débit, garantissant ainsi l'efficacité et la convivialité de l'outil.

5.1. Exportation des résultats

Enregistrez la sortie dans un fichier JSON structuré pour une utilisation plus facile.

   pip install requests beautifulsoup4

5.2. Gestion des erreurs

Ajoutez une gestion robuste des erreurs pour les erreurs réseau et les modifications HTML inattendues :

<div role="rowheader">
  <a href="/owner/repo/tree/main/folder-name">folder-name</a>
</div>

5.3. Limitation du débit

Pour éviter d'être limité par GitHub, introduisez des délais :

import requests
from bs4 import BeautifulSoup
import time

def crawl_github_folder(url, depth=0, max_depth=3):
    """
    Recursively crawls a GitHub repository folder structure.

    Parameters:
    - url (str): URL of the GitHub folder to scrape.
    - depth (int): Current recursion depth.
    - max_depth (int): Maximum depth to recurse.
    """
    if depth > max_depth:
        return

    headers = {"User-Agent": "Mozilla/5.0"}
    response = requests.get(url, headers=headers)

    if response.status_code != 200:
        print(f"Failed to access {url} (Status code: {response.status_code})")
        return

    soup = BeautifulSoup(response.text, 'html.parser')

    # Extract folder and file links
    items = soup.select('div[role="rowheader"] a')

    for item in items:
        item_name = item.text.strip()
        item_url = f"https://github.com{item['href']}"

        if '/tree/' in item_url:
            print(f"{'  ' * depth}Folder: {item_name}")
            crawl_github_folder(item_url, depth + 1, max_depth)
        elif '/blob/' in item_url:
            print(f"{'  ' * depth}File: {item_name}")

# Example usage
if __name__ == "__main__":
    repo_url = "https://github.com/<owner>/<repo>/tree/<branch>/<folder>"
    crawl_github_folder(repo_url)
</folder></branch></repo></owner>

6. Considérations éthiques

Rédigée par Shpetim Haxhiu, expert en automatisation logicielle et programmation éthique, cette section garantit le respect des meilleures pratiques lors de l'utilisation du robot GitHub.

  • Conformité : adhérez aux conditions d'utilisation de GitHub.
  • Minimiser la charge : respectez les serveurs de GitHub en limitant les requêtes et en ajoutant des délais.
  • Autorisation : obtenez l'autorisation pour une exploration approfondie des référentiels privés.

7. Code complet

Voici le script consolidé avec toutes les fonctionnalités incluses :

import json

def crawl_to_json(url, depth=0, max_depth=3):
    """Crawls and saves results as JSON."""
    result = {}

    if depth > max_depth:
        return result

    headers = {"User-Agent": "Mozilla/5.0"}
    response = requests.get(url, headers=headers)

    if response.status_code != 200:
        print(f"Failed to access {url}")
        return result

    soup = BeautifulSoup(response.text, 'html.parser')
    items = soup.select('div[role="rowheader"] a')

    for item in items:
        item_name = item.text.strip()
        item_url = f"https://github.com{item['href']}"

        if '/tree/' in item_url:
            result[item_name] = crawl_to_json(item_url, depth + 1, max_depth)
        elif '/blob/' in item_url:
            result[item_name] = "file"

    return result

if __name__ == "__main__":
    repo_url = "https://github.com/<owner>/<repo>/tree/<branch>/<folder>"
    structure = crawl_to_json(repo_url)

    with open("output.json", "w") as file:
        json.dump(structure, file, indent=2)

    print("Repository structure saved to output.json")
</folder></branch></repo></owner>

En suivant ce guide détaillé, vous pouvez créer un robot d'exploration de dossiers GitHub robuste. Cet outil peut être adapté à divers besoins tout en garantissant le respect de l'éthique.


N'hésitez pas à laisser des questions dans la section commentaires ! N'oubliez pas non plus de me contacter :

  • Email : shpetim.h@gmail.com
  • LinkedIn : linkedin.com/in/shpetimhaxhiu
  • GitHub : github.com/shpetimhaxhiu

Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!

Déclaration
Le contenu de cet article est volontairement contribué par les internautes et les droits d'auteur appartiennent à l'auteur original. Ce site n'assume aucune responsabilité légale correspondante. Si vous trouvez un contenu suspecté de plagiat ou de contrefaçon, veuillez contacter admin@php.cn
Comment utiliser Python pour trouver la distribution ZIPF d'un fichier texteComment utiliser Python pour trouver la distribution ZIPF d'un fichier texteMar 05, 2025 am 09:58 AM

Ce tutoriel montre comment utiliser Python pour traiter le concept statistique de la loi de Zipf et démontre l'efficacité de la lecture et du tri de Python de gros fichiers texte lors du traitement de la loi. Vous vous demandez peut-être ce que signifie le terme distribution ZIPF. Pour comprendre ce terme, nous devons d'abord définir la loi de Zipf. Ne vous inquiétez pas, je vais essayer de simplifier les instructions. La loi de Zipf La loi de Zipf signifie simplement: dans un grand corpus en langage naturel, les mots les plus fréquents apparaissent environ deux fois plus fréquemment que les deuxième mots fréquents, trois fois comme les troisième mots fréquents, quatre fois comme quatrième mots fréquents, etc. Regardons un exemple. Si vous regardez le corpus brun en anglais américain, vous remarquerez que le mot le plus fréquent est "th

Comment utiliser la belle soupe pour analyser HTML?Comment utiliser la belle soupe pour analyser HTML?Mar 10, 2025 pm 06:54 PM

Cet article explique comment utiliser la belle soupe, une bibliothèque Python, pour analyser HTML. Il détaille des méthodes courantes comme find (), find_all (), select () et get_text () pour l'extraction des données, la gestion de diverses structures et erreurs HTML et alternatives (Sel

Filtrage d'image en pythonFiltrage d'image en pythonMar 03, 2025 am 09:44 AM

Traiter avec des images bruyantes est un problème courant, en particulier avec des photos de téléphones portables ou de caméras basse résolution. Ce tutoriel explore les techniques de filtrage d'images dans Python à l'aide d'OpenCV pour résoudre ce problème. Filtrage d'image: un outil puissant Filtre d'image

Comment travailler avec des documents PDF à l'aide de PythonComment travailler avec des documents PDF à l'aide de PythonMar 02, 2025 am 09:54 AM

Les fichiers PDF sont populaires pour leur compatibilité multiplateforme, avec du contenu et de la mise en page cohérents sur les systèmes d'exploitation, les appareils de lecture et les logiciels. Cependant, contrairement aux fichiers de texte brut de traitement Python, les fichiers PDF sont des fichiers binaires avec des structures plus complexes et contiennent des éléments tels que des polices, des couleurs et des images. Heureusement, il n'est pas difficile de traiter les fichiers PDF avec les modules externes de Python. Cet article utilisera le module PYPDF2 pour montrer comment ouvrir un fichier PDF, imprimer une page et extraire du texte. Pour la création et l'édition des fichiers PDF, veuillez vous référer à un autre tutoriel de moi. Préparation Le noyau réside dans l'utilisation du module externe PYPDF2. Tout d'abord, l'installez en utilisant PIP: pip is p

Comment se cacher en utilisant Redis dans les applications DjangoComment se cacher en utilisant Redis dans les applications DjangoMar 02, 2025 am 10:10 AM

Ce tutoriel montre comment tirer parti de la mise en cache Redis pour augmenter les performances des applications Python, en particulier dans un cadre Django. Nous couvrirons l'installation redis, la configuration de Django et les comparaisons de performances pour mettre en évidence le bien

Comment effectuer l'apprentissage en profondeur avec TensorFlow ou Pytorch?Comment effectuer l'apprentissage en profondeur avec TensorFlow ou Pytorch?Mar 10, 2025 pm 06:52 PM

Cet article compare TensorFlow et Pytorch pour l'apprentissage en profondeur. Il détaille les étapes impliquées: préparation des données, construction de modèles, formation, évaluation et déploiement. Différences clés entre les cadres, en particulier en ce qui concerne le raisin informatique

Comment implémenter votre propre structure de données dans PythonComment implémenter votre propre structure de données dans PythonMar 03, 2025 am 09:28 AM

Ce didacticiel montre la création d'une structure de données de pipeline personnalisée dans Python 3, en tirant parti des classes et de la surcharge de l'opérateur pour une fonctionnalité améliorée. La flexibilité du pipeline réside dans sa capacité à appliquer une série de fonctions à un ensemble de données, GE

Introduction à la programmation parallèle et simultanée dans PythonIntroduction à la programmation parallèle et simultanée dans PythonMar 03, 2025 am 10:32 AM

Python, un favori pour la science et le traitement des données, propose un écosystème riche pour l'informatique haute performance. Cependant, la programmation parallèle dans Python présente des défis uniques. Ce tutoriel explore ces défis, en se concentrant sur l'interprète mondial

See all articles

Outils d'IA chauds

Undresser.AI Undress

Undresser.AI Undress

Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover

AI Clothes Remover

Outil d'IA en ligne pour supprimer les vêtements des photos.

Undress AI Tool

Undress AI Tool

Images de déshabillage gratuites

Clothoff.io

Clothoff.io

Dissolvant de vêtements AI

AI Hentai Generator

AI Hentai Generator

Générez AI Hentai gratuitement.

Article chaud

R.E.P.O. Crystals d'énergie expliqués et ce qu'ils font (cristal jaune)
2 Il y a quelques semainesBy尊渡假赌尊渡假赌尊渡假赌
Repo: Comment relancer ses coéquipiers
4 Il y a quelques semainesBy尊渡假赌尊渡假赌尊渡假赌
Hello Kitty Island Adventure: Comment obtenir des graines géantes
4 Il y a quelques semainesBy尊渡假赌尊渡假赌尊渡假赌

Outils chauds

SublimeText3 version Mac

SublimeText3 version Mac

Logiciel d'édition de code au niveau de Dieu (SublimeText3)

DVWA

DVWA

Damn Vulnerable Web App (DVWA) est une application Web PHP/MySQL très vulnérable. Ses principaux objectifs sont d'aider les professionnels de la sécurité à tester leurs compétences et leurs outils dans un environnement juridique, d'aider les développeurs Web à mieux comprendre le processus de sécurisation des applications Web et d'aider les enseignants/étudiants à enseigner/apprendre dans un environnement de classe. Application Web sécurité. L'objectif de DVWA est de mettre en pratique certaines des vulnérabilités Web les plus courantes via une interface simple et directe, avec différents degrés de difficulté. Veuillez noter que ce logiciel

Listes Sec

Listes Sec

SecLists est le compagnon ultime du testeur de sécurité. Il s'agit d'une collection de différents types de listes fréquemment utilisées lors des évaluations de sécurité, le tout en un seul endroit. SecLists contribue à rendre les tests de sécurité plus efficaces et productifs en fournissant facilement toutes les listes dont un testeur de sécurité pourrait avoir besoin. Les types de listes incluent les noms d'utilisateur, les mots de passe, les URL, les charges utiles floues, les modèles de données sensibles, les shells Web, etc. Le testeur peut simplement extraire ce référentiel sur une nouvelle machine de test et il aura accès à tous les types de listes dont il a besoin.

Télécharger la version Mac de l'éditeur Atom

Télécharger la version Mac de l'éditeur Atom

L'éditeur open source le plus populaire

ZendStudio 13.5.1 Mac

ZendStudio 13.5.1 Mac

Puissant environnement de développement intégré PHP