recherche

Achetez-moi un café☕

*Mon message explique Caltech 101.

Caltech101() peut utiliser l'ensemble de données Caltech 101 comme indiqué ci-dessous :

*Mémos :

  • Le 1er argument est root (Required-Type:str ou pathlib.Path). *Un chemin absolu ou relatif est possible.
  • Le 2ème argument est target_type(Optional-Default:"category"-Type:str ou tuple ou liste de str). *"catégorie" et/ou "annotation" peuvent y être définies.
  • Le 3ème argument est transform(Optional-Default:None-Type:callable).
  • Le 4ème argument est target_transform(Optional-Default:None-Type:callable).
  • Le 5ème argument est download(Optional-Default:False-Type:bool) : *Mémos :
    • Si c'est vrai, l'ensemble de données est téléchargé depuis Internet et extrait (décompressé) à la racine.
    • Si c'est Vrai et que l'ensemble de données est déjà téléchargé, il est extrait.
    • Si c'est vrai et que l'ensemble de données est déjà téléchargé et extrait, rien ne se passe.
    • Il devrait être faux si l'ensemble de données est déjà téléchargé et extrait car il est plus rapide.
    • Vous pouvez télécharger et extraire manuellement l'ensemble de données (101_ObjectCategories.tar.gz et Annotations.tar) d'ici vers data/caltech101/.
  • À propos des catégories des indices d'image, Visages(0) vaut 0~434, Faces_easy(1) vaut 435~869, Léopards(2 ) est 870 ~ 1069, Motos(3) est 1070~1867, accordéon(4) est 1868~1922, avions(5) est 1923~2722, ancre(6) est 2723 ~ 2764, fourmi(7) est 2765~2806, baril(8) est 2807~2853, basse(9) est 2854~2907, etc. .
from torchvision.datasets import Caltech101

category_data = Caltech101(
    root="data"
)

category_data = Caltech101(
    root="data",
    target_type="category",
    transform=None,
    target_transform=None,
    download=False
)

annotation_data = Caltech101(
    root="data",
    target_type="annotation"
)

all_data = Caltech101(
    root="data",
    target_type=["category", "annotation"]
)

len(category_data), len(annotation_data), len(all_data)
# (8677, 8677, 8677)

category_data
# Dataset Caltech101
#     Number of datapoints: 8677
#     Root location: data\caltech101
#     Target type: ['category']

category_data.root
# 'data/caltech101'

category_data.target_type
# ['category']

print(category_data.transform)
# None

print(category_data.target_transform)
# None

category_data.download
# <bound method caltech101.download of dataset caltech101 number datapoints: root location: data target type:>

len(category_data.categories)
# 101

category_data.categories
# ['Faces', 'Faces_easy', 'Leopards', 'Motorbikes', 'accordion', 
#  'airplanes', 'anchor', 'ant', 'barrel', 'bass', 'beaver',
#  'binocular', 'bonsai', 'brain', 'brontosaurus', 'buddha',
#  'butterfly', 'camera', 'cannon', 'car_side', 'ceiling_fan',
#  'cellphone', 'chair', 'chandelier', 'cougar_body', 'cougar_face', ...]

len(category_data.annotation_categories)
# 101

category_data.annotation_categories
# ['Faces_2', 'Faces_3', 'Leopards', 'Motorbikes_16', 'accordion',
#  'Airplanes_Side_2', 'anchor', 'ant', 'barrel', 'bass',
#  'beaver', 'binocular', 'bonsai', 'brain', 'brontosaurus',
#  'buddha', 'butterfly', 'camera', 'cannon', 'car_side',
#  'ceiling_fan', 'cellphone', 'chair', 'chandelier', 'cougar_body', ...]

category_data[0]
# (<pil.jpegimageplugin.jpegimagefile image mode="RGB" size="510x337">, 0)

category_data[1]
# (<pil.jpegimageplugin.jpegimagefile image mode="RGB" size="519x343">, 0)

category_data[2]
# (<pil.jpegimageplugin.jpegimagefile image mode="RGB" size="492x325">, 0)

category_data[435]
# (<pil.jpegimageplugin.jpegimagefile image mode="RGB" size="290x334">, 1)

category_data[870]
# (<pil.jpegimageplugin.jpegimagefile image mode="RGB" size="192x128">, 2)

annotation_data[0]
# (<pil.jpegimageplugin.jpegimagefile image mode="RGB" size="510x337">,
#  array([[10.00958466, 8.18210863, 8.18210863, 10.92332268, ...],
#         [132.30670927, 120.42811502, 103.52396166, 90.73162939, ...]]))

annotation_data[1]
# (<pil.jpegimageplugin.jpegimagefile image mode="RGB" size="519x343">,
#  array([[15.19298246, 13.71929825, 15.19298246, 19.61403509, ...],
#         [121.5877193, 103.90350877, 80.81578947, 64.11403509, ...]]))

annotation_data[2]
# (<pil.jpegimageplugin.jpegimagefile image mode="RGB" size="492x325">,
#  array([[10.40789474, 7.17807018, 5.79385965, 9.02368421, ...],
#         [131.30789474, 120.69561404, 102.23947368, 86.09035088, ...]]))

annotation_data[435]
# (<pil.jpegimageplugin.jpegimagefile image mode="RGB" size="290x334">,
#  array([[64.52631579, 95.31578947, 123.26315789, 149.31578947, ...],
#         [15.42105263, 8.31578947, 10.21052632, 28.21052632, ...]]))

annotation_data[870]
# (<pil.jpegimageplugin.jpegimagefile image mode="RGB" size="192x128">,
#  array([[2.96536524, 7.55604534, 19.45780856, 33.73992443, ...],
#         [23.63413098, 32.13539043, 33.83564232, 8.84193955, ...]]))

all_data[0]
# (<pil.jpegimageplugin.jpegimagefile image mode="RGB" size="510x337">,
#  (0, array([[10.00958466, 8.18210863, 8.18210863, 10.92332268, ...],
#             [132.30670927, 120.42811502, 103.52396166, 90.73162939, ...]]))

all_data[1]
# (<pil.jpegimageplugin.jpegimagefile image mode="RGB" size="519x343">,
#  (0, array([[15.19298246, 13.71929825, 15.19298246, 19.61403509, ...],
#             [121.5877193, 103.90350877, 80.81578947, 64.11403509, ...]]))

all_data[2]
# (<pil.jpegimageplugin.jpegimagefile image mode="RGB" size="492x325">,
#  (0, array([[10.40789474, 7.17807018, 5.79385965, 9.02368421, ...],
#             [131.30789474, 120.69561404, 102.23947368, 86.09035088, ...]]))

all_data[3]
# (<pil.jpegimageplugin.jpegimagefile image mode="RGB" size="538x355">,
#  (0, array([[19.54035088, 18.57894737, 26.27017544, 38.2877193, ...],
#             [131.49122807, 100.24561404, 74.2877193, 49.29122807, ...]]))

all_data[4]
# (<pil.jpegimageplugin.jpegimagefile image mode="RGB" size="528x349">,
#  (0, array([[11.87982456, 11.87982456, 13.86578947, 15.35526316, ...],
#             [128.34649123, 105.50789474, 91.60614035, 76.71140351, ...]]))

import matplotlib.pyplot as plt

def show_images(data, main_title=None):
    plt.figure(figsize=(10, 5))
    plt.suptitle(t=main_title, y=1.0, fontsize=14)
    ims = (0, 1, 2, 435, 870, 1070, 1868, 1923, 2723, 2765, 2807, 2854)
    for i, j in enumerate(ims, start=1):
        plt.subplot(2, 5, i)
        if len(data.target_type) == 1:
            if data.target_type[0] == "category":
                im, lab = data[j]
                plt.title(label=lab)
            elif data.target_type[0] == "annotation":
                im, (px, py) = data[j]
                plt.scatter(x=px, y=py)
            plt.imshow(X=im)
        elif len(data.target_type) == 2:
            if data.target_type[0] == "category":
                im, (lab, (px, py)) = data[j]
            elif data.target_type[0] == "annotation":
                im, ((px, py), lab) = data[j]
            plt.title(label=lab)
            plt.imshow(X=im)
            plt.scatter(x=px, y=py)
        if i == 10:
            break
    plt.tight_layout()
    plt.show()

show_images(data=category_data, main_title="category_data")
show_images(data=annotation_data, main_title="annotation_data")
show_images(data=all_data, main_title="all_data")
</pil.jpegimageplugin.jpegimagefile></pil.jpegimageplugin.jpegimagefile></pil.jpegimageplugin.jpegimagefile></pil.jpegimageplugin.jpegimagefile></pil.jpegimageplugin.jpegimagefile></pil.jpegimageplugin.jpegimagefile></pil.jpegimageplugin.jpegimagefile></pil.jpegimageplugin.jpegimagefile></pil.jpegimageplugin.jpegimagefile></pil.jpegimageplugin.jpegimagefile></pil.jpegimageplugin.jpegimagefile></pil.jpegimageplugin.jpegimagefile></pil.jpegimageplugin.jpegimagefile></pil.jpegimageplugin.jpegimagefile></pil.jpegimageplugin.jpegimagefile></bound>

Caltech  in PyTorch

Caltech  in PyTorch

Caltech  in PyTorch

Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!

Déclaration
Le contenu de cet article est volontairement contribué par les internautes et les droits d'auteur appartiennent à l'auteur original. Ce site n'assume aucune responsabilité légale correspondante. Si vous trouvez un contenu suspecté de plagiat ou de contrefaçon, veuillez contacter admin@php.cn
Python vs C: Comprendre les principales différencesPython vs C: Comprendre les principales différencesApr 21, 2025 am 12:18 AM

Python et C ont chacun leurs propres avantages, et le choix doit être basé sur les exigences du projet. 1) Python convient au développement rapide et au traitement des données en raison de sa syntaxe concise et de son typage dynamique. 2) C convient à des performances élevées et à une programmation système en raison de son typage statique et de sa gestion de la mémoire manuelle.

Python vs C: Quelle langue choisir pour votre projet?Python vs C: Quelle langue choisir pour votre projet?Apr 21, 2025 am 12:17 AM

Le choix de Python ou C dépend des exigences du projet: 1) Si vous avez besoin de développement rapide, de traitement des données et de conception du prototype, choisissez Python; 2) Si vous avez besoin de performances élevées, de faible latence et de contrôle matériel, choisissez C.

Atteindre vos objectifs python: la puissance de 2 heures par jourAtteindre vos objectifs python: la puissance de 2 heures par jourApr 20, 2025 am 12:21 AM

En investissant 2 heures d'apprentissage Python chaque jour, vous pouvez améliorer efficacement vos compétences en programmation. 1. Apprenez de nouvelles connaissances: lire des documents ou regarder des tutoriels. 2. Pratique: Écrivez du code et complétez les exercices. 3. Revue: consolider le contenu que vous avez appris. 4. Pratique du projet: Appliquez ce que vous avez appris dans les projets réels. Un tel plan d'apprentissage structuré peut vous aider à maîtriser systématiquement Python et à atteindre des objectifs de carrière.

Maximiser 2 heures: stratégies d'apprentissage Python efficacesMaximiser 2 heures: stratégies d'apprentissage Python efficacesApr 20, 2025 am 12:20 AM

Les méthodes pour apprendre Python efficacement dans les deux heures incluent: 1. Passez en revue les connaissances de base et assurez-vous que vous connaissez l'installation de Python et la syntaxe de base; 2. Comprendre les concepts de base de Python, tels que les variables, les listes, les fonctions, etc.; 3. Master Basic et Advanced Utilisation en utilisant des exemples; 4. Apprenez des erreurs courantes et des techniques de débogage; 5. Appliquer l'optimisation des performances et les meilleures pratiques, telles que l'utilisation des compréhensions de la liste et le suivi du guide de style PEP8.

Choisir entre Python et C: La bonne langue pour vousChoisir entre Python et C: La bonne langue pour vousApr 20, 2025 am 12:20 AM

Python convient aux débutants et à la science des données, et C convient à la programmation système et au développement de jeux. 1. Python est simple et facile à utiliser, adapté à la science des données et au développement Web. 2.C fournit des performances et un contrôle élevés, adaptés au développement de jeux et à la programmation système. Le choix doit être basé sur les besoins du projet et les intérêts personnels.

Python vs C: Une analyse comparative des langages de programmationPython vs C: Une analyse comparative des langages de programmationApr 20, 2025 am 12:14 AM

Python est plus adapté à la science des données et au développement rapide, tandis que C est plus adapté aux performances élevées et à la programmation système. 1. La syntaxe Python est concise et facile à apprendre, adaptée au traitement des données et à l'informatique scientifique. 2.C a une syntaxe complexe mais d'excellentes performances et est souvent utilisée dans le développement de jeux et la programmation système.

2 heures par jour: le potentiel de l'apprentissage python2 heures par jour: le potentiel de l'apprentissage pythonApr 20, 2025 am 12:14 AM

Il est possible d'investir deux heures par jour pour apprendre Python. 1. Apprenez de nouvelles connaissances: apprenez de nouveaux concepts en une heure, comme les listes et les dictionnaires. 2. Pratique et pratique: utilisez une heure pour effectuer des exercices de programmation, tels que la rédaction de petits programmes. Grâce à une planification et à une persévérance raisonnables, vous pouvez maîtriser les concepts de base de Python en peu de temps.

Python vs C: courbes d'apprentissage et facilité d'utilisationPython vs C: courbes d'apprentissage et facilité d'utilisationApr 19, 2025 am 12:20 AM

Python est plus facile à apprendre et à utiliser, tandis que C est plus puissant mais complexe. 1. La syntaxe Python est concise et adaptée aux débutants. Le typage dynamique et la gestion automatique de la mémoire le rendent facile à utiliser, mais peuvent entraîner des erreurs d'exécution. 2.C fournit des fonctionnalités de contrôle de bas niveau et avancées, adaptées aux applications haute performance, mais a un seuil d'apprentissage élevé et nécessite une gestion manuelle de la mémoire et de la sécurité.

See all articles

Outils d'IA chauds

Undresser.AI Undress

Undresser.AI Undress

Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover

AI Clothes Remover

Outil d'IA en ligne pour supprimer les vêtements des photos.

Undress AI Tool

Undress AI Tool

Images de déshabillage gratuites

Clothoff.io

Clothoff.io

Dissolvant de vêtements AI

Video Face Swap

Video Face Swap

Échangez les visages dans n'importe quelle vidéo sans effort grâce à notre outil d'échange de visage AI entièrement gratuit !

Outils chauds

Version crackée d'EditPlus en chinois

Version crackée d'EditPlus en chinois

Petite taille, coloration syntaxique, ne prend pas en charge la fonction d'invite de code

ZendStudio 13.5.1 Mac

ZendStudio 13.5.1 Mac

Puissant environnement de développement intégré PHP

DVWA

DVWA

Damn Vulnerable Web App (DVWA) est une application Web PHP/MySQL très vulnérable. Ses principaux objectifs sont d'aider les professionnels de la sécurité à tester leurs compétences et leurs outils dans un environnement juridique, d'aider les développeurs Web à mieux comprendre le processus de sécurisation des applications Web et d'aider les enseignants/étudiants à enseigner/apprendre dans un environnement de classe. Application Web sécurité. L'objectif de DVWA est de mettre en pratique certaines des vulnérabilités Web les plus courantes via une interface simple et directe, avec différents degrés de difficulté. Veuillez noter que ce logiciel

MantisBT

MantisBT

Mantis est un outil Web de suivi des défauts facile à déployer, conçu pour faciliter le suivi des défauts des produits. Cela nécessite PHP, MySQL et un serveur Web. Découvrez nos services de démonstration et d'hébergement.

mPDF

mPDF

mPDF est une bibliothèque PHP qui peut générer des fichiers PDF à partir de HTML encodé en UTF-8. L'auteur original, Ian Back, a écrit mPDF pour générer des fichiers PDF « à la volée » depuis son site Web et gérer différentes langues. Il est plus lent et produit des fichiers plus volumineux lors de l'utilisation de polices Unicode que les scripts originaux comme HTML2FPDF, mais prend en charge les styles CSS, etc. et présente de nombreuses améliorations. Prend en charge presque toutes les langues, y compris RTL (arabe et hébreu) ​​et CJK (chinois, japonais et coréen). Prend en charge les éléments imbriqués au niveau du bloc (tels que P, DIV),