recherche
Maisondéveloppement back-endTutoriel PythonComment le module « itertools » de Python peut-il aider à regrouper de grands itérateurs pour un traitement efficace ?

How Can Python's `itertools` Module Help Batch Large Iterators for Efficient Processing?

Traitement par lots d'itérateurs avec les itertools de Python

Itérer sur de grands itérateurs en Python peut être inefficace si vous devez traiter des données en morceaux plus petits. Ce problème survient lorsque vous traitez des ensembles de données gourmands en mémoire ou lorsque vous souhaitez éviter de surcharger votre système.

Entrez dans le module itertools, qui fournit une suite d'outils pour travailler avec des itérateurs. L'une de ses fonctionnalités les moins connues mais incroyablement utiles est la possibilité de regrouper les itérateurs en morceaux plus petits.

itertools.batched()

La fonction itertools.batched() prend un itérateur et une taille de morceau comme arguments et renvoie un nouvel itérateur qui produit des tuples d'éléments de l'itérateur d'origine, chaque tuple représentant un batch.

Par exemple :

import itertools

l = [1, 2, 3, 4, 5, 6, 7]
batched_l = itertools.batched(l, 3)
for batch in batched_l:
    print(batch)

SORTIE :

(1, 2, 3)
(4, 5, 6)
(7,)

Autres options

Pendant que itertools.batched( ) est la solution la plus simple, mais elle ne répond peut-être pas à toutes vos exigences. Si vous avez besoin de plus de contrôle sur la façon dont les lots sont gérés, envisagez les alternatives suivantes :

  • grouper() : Cette recette de la documentation itertools vous permet de spécifier à quel point les lots incomplets doivent être manipulé : rempli, supprimé ou considéré comme une erreur.
  • batched(iterable, n) : Une autre recette qui fonctionne de la même manière que itertools.batched(), mais uniquement pour les séquences et en préservant le type de séquence d'origine.
  • Sequence Slicing : Si vous avez affaire à une liste ou à un tuple, un simple découpage peut également être un moyen efficace de regrouper des données.

Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!

Déclaration
Le contenu de cet article est volontairement contribué par les internautes et les droits d'auteur appartiennent à l'auteur original. Ce site n'assume aucune responsabilité légale correspondante. Si vous trouvez un contenu suspecté de plagiat ou de contrefaçon, veuillez contacter admin@php.cn
Comment les tableaux sont-ils utilisés dans l'informatique scientifique avec Python?Comment les tableaux sont-ils utilisés dans l'informatique scientifique avec Python?Apr 25, 2025 am 12:28 AM

ArraySinpython, en particulier Vianumpy, arecrucialinsciciencomputingfortheirefficiency andversatity.1) ils sont les opérations de data-analyse et la machineauning.2)

Comment gérez-vous différentes versions Python sur le même système?Comment gérez-vous différentes versions Python sur le même système?Apr 25, 2025 am 12:24 AM

Vous pouvez gérer différentes versions Python en utilisant Pyenv, Venv et Anaconda. 1) Utilisez PYENV pour gérer plusieurs versions Python: installer PYENV, définir les versions globales et locales. 2) Utilisez VENV pour créer un environnement virtuel pour isoler les dépendances du projet. 3) Utilisez Anaconda pour gérer les versions Python dans votre projet de science des données. 4) Gardez le Système Python pour les tâches au niveau du système. Grâce à ces outils et stratégies, vous pouvez gérer efficacement différentes versions de Python pour assurer le bon fonctionnement du projet.

Quels sont les avantages de l'utilisation de tableaux Numpy sur des tableaux Python standard?Quels sont les avantages de l'utilisation de tableaux Numpy sur des tableaux Python standard?Apr 25, 2025 am 12:21 AM

NumpyArrayShaveSeveralAdvantages OverStandardPyThonarRays: 1) TheaReMuchfasterDuetoc-bases Implementation, 2) Ils sont économisés par le therdémor

Comment la nature homogène des tableaux affecte-t-elle les performances?Comment la nature homogène des tableaux affecte-t-elle les performances?Apr 25, 2025 am 12:13 AM

L'impact de l'homogénéité des tableaux sur les performances est double: 1) L'homogénéité permet au compilateur d'optimiser l'accès à la mémoire et d'améliorer les performances; 2) mais limite la diversité du type, ce qui peut conduire à l'inefficacité. En bref, le choix de la bonne structure de données est crucial.

Quelles sont les meilleures pratiques pour écrire des scripts Python exécutables?Quelles sont les meilleures pratiques pour écrire des scripts Python exécutables?Apr 25, 2025 am 12:11 AM

Tocraftexecutablepythonscripts, suivant les autres proches: 1) addashebangline (#! / Usr / bin / leppython3) tomakethescriptexecutable.2) setpermisessionswithchmod xyour_script.py.3) organisationwithacleardocstringanduseifname == "__ __" Main __ ".

En quoi les tableaux Numpy diffèrent-ils des tableaux créés à l'aide du module de tableau?En quoi les tableaux Numpy diffèrent-ils des tableaux créés à l'aide du module de tableau?Apr 24, 2025 pm 03:53 PM

NumpyArraysarebetterFornumericalOperations andMulti-dimensionaldata, tandis que la réalisation de la réalisation

Comment l'utilisation des tableaux Numpy se compare-t-il à l'utilisation des tableaux de modules de tableau dans Python?Comment l'utilisation des tableaux Numpy se compare-t-il à l'utilisation des tableaux de modules de tableau dans Python?Apr 24, 2025 pm 03:49 PM

NumpyArraysareBetterForheAVYVumericalComputing, tandis que la réalisation de points contraints de réalisation.1) NumpyArraySoFerversATACTORATIONS ajusté pour les données

Comment le module CTYPES est-il lié aux tableaux dans Python?Comment le module CTYPES est-il lié aux tableaux dans Python?Apr 24, 2025 pm 03:45 PM

CTYPESALLOWSCREATINGAndMANIPulationc-styLearRaySInpython.1) UsectypeStOinterfaceWithClibraryForPerformance.2) Createc-stylearRaysFornumericalComptations.3) PassArrayStocfunction

See all articles

Outils d'IA chauds

Undresser.AI Undress

Undresser.AI Undress

Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover

AI Clothes Remover

Outil d'IA en ligne pour supprimer les vêtements des photos.

Undress AI Tool

Undress AI Tool

Images de déshabillage gratuites

Clothoff.io

Clothoff.io

Dissolvant de vêtements AI

Video Face Swap

Video Face Swap

Échangez les visages dans n'importe quelle vidéo sans effort grâce à notre outil d'échange de visage AI entièrement gratuit !

Outils chauds

PhpStorm version Mac

PhpStorm version Mac

Le dernier (2018.2.1) outil de développement intégré PHP professionnel

Télécharger la version Mac de l'éditeur Atom

Télécharger la version Mac de l'éditeur Atom

L'éditeur open source le plus populaire

Version Mac de WebStorm

Version Mac de WebStorm

Outils de développement JavaScript utiles

Listes Sec

Listes Sec

SecLists est le compagnon ultime du testeur de sécurité. Il s'agit d'une collection de différents types de listes fréquemment utilisées lors des évaluations de sécurité, le tout en un seul endroit. SecLists contribue à rendre les tests de sécurité plus efficaces et productifs en fournissant facilement toutes les listes dont un testeur de sécurité pourrait avoir besoin. Les types de listes incluent les noms d'utilisateur, les mots de passe, les URL, les charges utiles floues, les modèles de données sensibles, les shells Web, etc. Le testeur peut simplement extraire ce référentiel sur une nouvelle machine de test et il aura accès à tous les types de listes dont il a besoin.

Version crackée d'EditPlus en chinois

Version crackée d'EditPlus en chinois

Petite taille, coloration syntaxique, ne prend pas en charge la fonction d'invite de code