


Suppression de toutes les occurrences d'une valeur d'une liste
Alors que la méthode Remove() de Python permet de supprimer une seule occurrence d'une valeur d'une liste, il peut parfois être nécessaire de supprimer toutes les occurrences de cette valeur. Voici un guide pour y parvenir :
Approche fonctionnelle :
En Python, la fonction filter() intégrée fournit un moyen simple de supprimer des éléments spécifiques d'une liste. en fonction d'une condition donnée. En utilisant des expressions lambda ou des comparaisons manuelles, nous pouvons filtrer toutes les occurrences de la valeur cible :
# Python 3.x >>> x = [1, 2, 3, 2, 2, 2, 3, 4] >>> list(filter((2).__ne__, x)) [1, 3, 3, 4]
Cela filtre et renvoie une nouvelle liste contenant des éléments qui ne sont pas égaux à la cible de suppression (2), efficacement supprimant toutes les occurrences de 2.
Alternativement :
>>> list(filter(lambda a: a != 2, x)) [1, 3, 3, 4]
Ici, l'expression lambda compare directement chaque élément à 2 et renvoie True s'il n'est pas égal, filtrant les valeurs cibles.
Pour Python 2.x, la fonction de filtre renvoie un itérateur :
# Python 2.x >>> filter(lambda a: a != 2, x) [1, 3, 3, 4]
Dans les deux versions de Python, le résultat est une liste ou un itérateur contenant les éléments qui satisfont aux conditions de filtre, excluant effectivement la valeur cible de la liste d'origine.
Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!

Cet article explique comment utiliser la belle soupe, une bibliothèque Python, pour analyser HTML. Il détaille des méthodes courantes comme find (), find_all (), select () et get_text () pour l'extraction des données, la gestion de diverses structures et erreurs HTML et alternatives (Sel

Solution aux problèmes d'autorisation Lors de la visualisation de la version Python dans Linux Terminal Lorsque vous essayez d'afficher la version Python dans Linux Terminal, entrez Python ...

Le module statistique de Python fournit de puissantes capacités d'analyse statistique de données pour nous aider à comprendre rapidement les caractéristiques globales des données, telles que la biostatistique et l'analyse commerciale. Au lieu de regarder les points de données un par un, regardez simplement des statistiques telles que la moyenne ou la variance pour découvrir les tendances et les fonctionnalités des données d'origine qui peuvent être ignorées et comparer les grands ensembles de données plus facilement et efficacement. Ce tutoriel expliquera comment calculer la moyenne et mesurer le degré de dispersion de l'ensemble de données. Sauf indication contraire, toutes les fonctions de ce module prennent en charge le calcul de la fonction moyenne () au lieu de simplement additionner la moyenne. Les nombres de points flottants peuvent également être utilisés. Importer au hasard Statistiques d'importation de fracTI

La sérialisation et la désérialisation des objets Python sont des aspects clés de tout programme non trivial. Si vous enregistrez quelque chose dans un fichier Python, vous effectuez une sérialisation d'objets et une désérialisation si vous lisez le fichier de configuration, ou si vous répondez à une demande HTTP. Dans un sens, la sérialisation et la désérialisation sont les choses les plus ennuyeuses du monde. Qui se soucie de tous ces formats et protocoles? Vous voulez persister ou diffuser des objets Python et les récupérer dans son intégralité plus tard. C'est un excellent moyen de voir le monde à un niveau conceptuel. Cependant, à un niveau pratique, le schéma de sérialisation, le format ou le protocole que vous choisissez peut déterminer la vitesse, la sécurité, le statut de liberté de maintenance et d'autres aspects du programme

Cet article compare TensorFlow et Pytorch pour l'apprentissage en profondeur. Il détaille les étapes impliquées: préparation des données, construction de modèles, formation, évaluation et déploiement. Différences clés entre les cadres, en particulier en ce qui concerne le raisin informatique

Ce tutoriel s'appuie sur l'introduction précédente à la belle soupe, en se concentrant sur la manipulation de Dom au-delà de la simple navigation sur les arbres. Nous explorerons des méthodes et techniques de recherche efficaces pour modifier la structure HTML. Une méthode de recherche DOM commune est ex

L'article traite des bibliothèques Python populaires comme Numpy, Pandas, Matplotlib, Scikit-Learn, Tensorflow, Django, Flask et Demandes, détaillant leurs utilisations dans le calcul scientifique, l'analyse des données, la visualisation, l'apprentissage automatique, le développement Web et H et H

Cet article guide les développeurs Python sur la construction d'interfaces de ligne de commande (CLI). Il détaille à l'aide de bibliothèques comme Typer, Click et Argparse, mettant l'accent sur la gestion des entrées / sorties et promouvant des modèles de conception conviviaux pour une meilleure convivialité par la CLI.


Outils d'IA chauds

Undresser.AI Undress
Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover
Outil d'IA en ligne pour supprimer les vêtements des photos.

Undress AI Tool
Images de déshabillage gratuites

Clothoff.io
Dissolvant de vêtements AI

AI Hentai Generator
Générez AI Hentai gratuitement.

Article chaud

Outils chauds

SublimeText3 version chinoise
Version chinoise, très simple à utiliser

SublimeText3 version anglaise
Recommandé : version Win, prend en charge les invites de code !

MantisBT
Mantis est un outil Web de suivi des défauts facile à déployer, conçu pour faciliter le suivi des défauts des produits. Cela nécessite PHP, MySQL et un serveur Web. Découvrez nos services de démonstration et d'hébergement.

Dreamweaver CS6
Outils de développement Web visuel

Version Mac de WebStorm
Outils de développement JavaScript utiles