


Appliquer plusieurs fonctions à plusieurs colonnes GroupBy
Introduction
Lorsque vous travaillez avec des données groupées, il est souvent nécessaire d'appliquer plusieurs fonctions à plusieurs colonnes. La bibliothèque Pandas propose plusieurs méthodes pour y parvenir, notamment les méthodes agg et apply. Cependant, ces méthodes présentent certaines limites et ne répondent pas toujours à des cas d'utilisation spécifiques.
Utiliser agg avec un Dict
Comme mentionné dans la question, il est possible d'appliquer plusieurs fonctions à une série groupby objet à l'aide d'un dictionnaire :
grouped['D'].agg({'result1' : np.sum, 'result2' : np.mean})
Cette approche permet de spécifier les noms de colonnes comme clés et les fonctions correspondantes comme valeurs. Cependant, cela ne fonctionne que pour les objets groupby Series. Lorsqu'elles sont appliquées à un DataFrame groupby, les clés du dictionnaire sont censées être des noms de colonnes, et non des noms de colonnes de sortie.
Utilisation d'agg avec les fonctions Lambda
La question explore également l'utilisation des fonctions lambda dans agg pour effectuer opérations basées sur d’autres colonnes au sein de l’objet groupby. Cette approche convient lorsque vos fonctions impliquent des dépendances sur d'autres colonnes. Bien que cela ne soit pas explicitement pris en charge par la méthode agg, il est possible de contourner cette limitation en spécifiant manuellement les noms de colonnes sous forme de chaînes :
grouped.agg({'C_sum' : lambda x: x['C'].sum(), 'C_std': lambda x: x['C'].std(), 'D_sum' : lambda x: x['D'].sum()}, 'D_sumifC3': lambda x: x['D'][x['C'] == 3].sum(), ...)
Cette approche permet d'appliquer plusieurs fonctions à différentes colonnes, y compris celles qui dépendent des autres. . Cependant, il peut être verbeux et nécessite une gestion minutieuse des noms de colonnes.
Utiliser apply avec une fonction personnalisée
Une approche plus flexible consiste à utiliser la méthode apply, qui transmet l'ensemble du DataFrame du groupe à la fonction fournie. Cela permet d'effectuer des opérations et des interactions plus complexes entre les colonnes du groupe :
def f(x): d = {} d['a_sum'] = x['a'].sum() d['a_max'] = x['a'].max() d['b_mean'] = x['b'].mean() d['c_d_prodsum'] = (x['c'] * x['d']).sum() return pd.Series(d, index=['a_sum', 'a_max', 'b_mean', 'c_d_prodsum']) df.groupby('group').apply(f)
En renvoyant une série avec des colonnes correctement étiquetées, vous pouvez facilement effectuer plusieurs calculs sur le groupby DataFrame. Cette approche est plus polyvalente et permet des opérations complexes basées sur plusieurs colonnes.
Conclusion
L'application de plusieurs fonctions à plusieurs colonnes regroupées nécessite un examen attentif de la structure des données et des opérations souhaitées. La méthode agg convient aux opérations simples sur des objets Series, tandis que la méthode apply offre une plus grande flexibilité lorsque vous travaillez avec des DataFrames groupby ou effectuez des calculs complexes.
Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!

ArraySareNenerallyMoreMemory Econtesious ANLILISTS INFORMAGE UNIMÉRIQUE DATADUETOTHEIRFIXED-SIZENATURANDDDIRECTMEMORYACCESS.1) ArraySstoreelementsInAconGuLblock, réduisant les listes de linge-ouvrages

ToconvertapyThonListoanArray, usethearraymodule: 1) ImportTheArraymodule, 2) Crééalist, 3) usearray (typecode, list) toconvertit, spécifiant le système de code pour la datte, améliorant la performance

Les listes Python peuvent stocker différents types de données. L'exemple de liste contient des entiers, des chaînes, des numéros de points flottants, des booléens, des listes imbriquées et des dictionnaires. La flexibilité de la liste est précieuse dans le traitement des données et le prototypage, mais il doit être utilisé avec prudence pour assurer la lisibilité et la maintenabilité du code.

PythondoSoSnothaveBuilt-inArrays; utEtHeArrayModuleformMory-EfficientHomoGeneousDatastorage, tandis que lestiné pour les dataTypes.

ThemostComMonlyUsedModuleforCreatingArraysInpyThonisNumpy.1) numpyprovidesefficientToolsforArrayoperations, IdealFornumericalData.2) ArraysCanBecatedUsingNp.Array () For1dand2Dstructures.3)

ToAppendementStoapyThonList, usetheAppend () methodforsingleelements, prolong () forulTipleElements, andInsert () forSpecificPositifs.1) useAppend () foraddingOneelementAtheend.2) useExtend () ToaddMultipleElementSEFFIENTLY.3)

TOCREATEAPYTHONLIST, USSquareBracket [] et SEPARateItemswithcommas.1) listsaredynynamicandcanholdmixeddatatypes.2) useAppend (), retire (), andslitingformMipulation.3) Listcomprehensationafficientforcereglists.4)

Dans les domaines de la finance, de la recherche scientifique, des soins médicaux et de l'IA, il est crucial de stocker et de traiter efficacement les données numériques. 1) En finance, l'utilisation de fichiers mappés de mémoire et de bibliothèques Numpy peut considérablement améliorer la vitesse de traitement des données. 2) Dans le domaine de la recherche scientifique, les fichiers HDF5 sont optimisés pour le stockage et la récupération des données. 3) Dans les soins médicaux, les technologies d'optimisation de la base de données telles que l'indexation et le partitionnement améliorent les performances des requêtes de données. 4) Dans l'IA, la fragmentation des données et la formation distribuée accélèrent la formation du modèle. Les performances et l'évolutivité du système peuvent être considérablement améliorées en choisissant les bons outils et technologies et en pesant les compromis entre les vitesses de stockage et de traitement.


Outils d'IA chauds

Undresser.AI Undress
Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover
Outil d'IA en ligne pour supprimer les vêtements des photos.

Undress AI Tool
Images de déshabillage gratuites

Clothoff.io
Dissolvant de vêtements AI

Video Face Swap
Échangez les visages dans n'importe quelle vidéo sans effort grâce à notre outil d'échange de visage AI entièrement gratuit !

Article chaud

Outils chauds

MinGW - GNU minimaliste pour Windows
Ce projet est en cours de migration vers osdn.net/projects/mingw, vous pouvez continuer à nous suivre là-bas. MinGW : un port Windows natif de GNU Compiler Collection (GCC), des bibliothèques d'importation et des fichiers d'en-tête librement distribuables pour la création d'applications Windows natives ; inclut des extensions du runtime MSVC pour prendre en charge la fonctionnalité C99. Tous les logiciels MinGW peuvent fonctionner sur les plates-formes Windows 64 bits.

Bloc-notes++7.3.1
Éditeur de code facile à utiliser et gratuit

Dreamweaver Mac
Outils de développement Web visuel

SublimeText3 version Mac
Logiciel d'édition de code au niveau de Dieu (SublimeText3)

SublimeText3 version anglaise
Recommandé : version Win, prend en charge les invites de code !
