


Comment conserver des objets en Python : un guide complet
Lorsque vous travaillez avec des objets en Python, il devient souvent nécessaire de sauvegarder leur état afin de pouvoir les utiliser ultérieurement. ou partagés entre différentes applications. Ce processus est communément appelé persistance des données.
Utilisation du module Pickle
La bibliothèque standard Python fournit un outil puissant pour la persistance d'objets appelé module pickle. Il vous permet de sérialiser des objets, en les convertissant efficacement en un flux d'octets pouvant être écrit dans un fichier ou transmis sur un réseau. Voici un exemple illustrant son utilisation :
import pickle # Create a Company object company1 = Company('banana', 40) # Open a file for writing with open('company_data.pkl', 'wb') as outp: # Serialize the object and store it in the file pickle.dump(company1, outp, pickle.HIGHEST_PROTOCOL) # Open a file for reading with open('company_data.pkl', 'rb') as inp: # Deserialize the object and load it into memory company1 = pickle.load(inp) # Retrieve and print the object's attributes print(company1.name) # 'banana' print(company1.value) # 40
Utilisation d'une fonction utilitaire personnalisée
Vous pouvez également définir une fonction utilitaire simple pour gérer le processus de sérialisation :
def save_object(obj, filename): with open(filename, 'wb') as outp: pickle.dump(obj, outp, pickle.HIGHEST_PROTOCOL) # Usage save_object(company1, 'company1.pkl')
Utilisations avancées
cPickle (ou _pickle) vs. pickle :
Pour des performances plus rapides, pensez à utiliser le module cPickle, qui est une implémentation C du module pickle. La différence de performances est marginale, mais la version C est nettement plus rapide. Dans Python 3, cPickle a été renommé _pickle.
Formats de flux de données (protocoles) :
pickle prend en charge plusieurs formats de flux de données appelés protocoles. Le protocole le plus élevé disponible dépend de la version de Python utilisée, et dans Python 3.8.1, la version 4 du protocole est utilisée par défaut.
Objets multiples :
Un cornichon Le fichier peut contenir plusieurs objets marinés. Pour stocker plusieurs objets, ils peuvent être placés dans un conteneur comme une liste, un tuple ou un dict, puis sérialisés dans un seul fichier.
Chargeurs personnalisés :
Si vous ne savez pas combien d'objets sont stockés dans un fichier pickle, vous pouvez utiliser une fonction de chargement personnalisée comme celle présentée ci-dessous pour les parcourir et les charger tous :
def pickle_loader(filename): with open(filename, "rb") as f: while True: try: yield pickle.load(f) except EOFError: break
Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!

Solution aux problèmes d'autorisation Lors de la visualisation de la version Python dans Linux Terminal Lorsque vous essayez d'afficher la version Python dans Linux Terminal, entrez Python ...

Cet article explique comment utiliser la belle soupe, une bibliothèque Python, pour analyser HTML. Il détaille des méthodes courantes comme find (), find_all (), select () et get_text () pour l'extraction des données, la gestion de diverses structures et erreurs HTML et alternatives (Sel

Le module statistique de Python fournit de puissantes capacités d'analyse statistique de données pour nous aider à comprendre rapidement les caractéristiques globales des données, telles que la biostatistique et l'analyse commerciale. Au lieu de regarder les points de données un par un, regardez simplement des statistiques telles que la moyenne ou la variance pour découvrir les tendances et les fonctionnalités des données d'origine qui peuvent être ignorées et comparer les grands ensembles de données plus facilement et efficacement. Ce tutoriel expliquera comment calculer la moyenne et mesurer le degré de dispersion de l'ensemble de données. Sauf indication contraire, toutes les fonctions de ce module prennent en charge le calcul de la fonction moyenne () au lieu de simplement additionner la moyenne. Les nombres de points flottants peuvent également être utilisés. Importer au hasard Statistiques d'importation de fracTI

Cet article compare TensorFlow et Pytorch pour l'apprentissage en profondeur. Il détaille les étapes impliquées: préparation des données, construction de modèles, formation, évaluation et déploiement. Différences clés entre les cadres, en particulier en ce qui concerne le raisin informatique

L'article traite des bibliothèques Python populaires comme Numpy, Pandas, Matplotlib, Scikit-Learn, Tensorflow, Django, Flask et Demandes, détaillant leurs utilisations dans le calcul scientifique, l'analyse des données, la visualisation, l'apprentissage automatique, le développement Web et H et H

Cet article guide les développeurs Python sur la construction d'interfaces de ligne de commande (CLI). Il détaille à l'aide de bibliothèques comme Typer, Click et Argparse, mettant l'accent sur la gestion des entrées / sorties et promouvant des modèles de conception conviviaux pour une meilleure convivialité par la CLI.

Lorsque vous utilisez la bibliothèque Pandas de Python, comment copier des colonnes entières entre deux frames de données avec différentes structures est un problème courant. Supposons que nous ayons deux dats ...

L'article traite du rôle des environnements virtuels dans Python, en se concentrant sur la gestion des dépendances du projet et l'évitement des conflits. Il détaille leur création, leur activation et leurs avantages pour améliorer la gestion de projet et réduire les problèmes de dépendance.


Outils d'IA chauds

Undresser.AI Undress
Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover
Outil d'IA en ligne pour supprimer les vêtements des photos.

Undress AI Tool
Images de déshabillage gratuites

Clothoff.io
Dissolvant de vêtements AI

AI Hentai Generator
Générez AI Hentai gratuitement.

Article chaud

Outils chauds

MantisBT
Mantis est un outil Web de suivi des défauts facile à déployer, conçu pour faciliter le suivi des défauts des produits. Cela nécessite PHP, MySQL et un serveur Web. Découvrez nos services de démonstration et d'hébergement.

Listes Sec
SecLists est le compagnon ultime du testeur de sécurité. Il s'agit d'une collection de différents types de listes fréquemment utilisées lors des évaluations de sécurité, le tout en un seul endroit. SecLists contribue à rendre les tests de sécurité plus efficaces et productifs en fournissant facilement toutes les listes dont un testeur de sécurité pourrait avoir besoin. Les types de listes incluent les noms d'utilisateur, les mots de passe, les URL, les charges utiles floues, les modèles de données sensibles, les shells Web, etc. Le testeur peut simplement extraire ce référentiel sur une nouvelle machine de test et il aura accès à tous les types de listes dont il a besoin.

PhpStorm version Mac
Le dernier (2018.2.1) outil de développement intégré PHP professionnel

Dreamweaver CS6
Outils de développement Web visuel

Envoyer Studio 13.0.1
Puissant environnement de développement intégré PHP