


Gestion des valeurs NaN dans NumPy et Pandas
Lorsque vous travaillez avec des données numériques, il est souvent souhaitable de conserver le type de tableau sous forme d'entiers tout en s'adaptant la présence de valeurs manquantes représentées par NaN (Not a Number). Cependant, cela pose un défi, car NaN ne peut pas être stocké dans des tableaux d'entiers.
Limites de NumPy
Les tableaux NumPy adhèrent à un type de données fixe et introduisent des valeurs NaN impose la conversion en un type de données à virgule flottante. Par conséquent, conserver les types de données entiers et incorporer des valeurs NaN directement dans NumPy n'est pas réalisable.
Contraintes de Pandas
Pandas, qui s'appuie fortement sur NumPy, hérite de cette limitation. Lors de la création d'un DataFrame à partir de colonnes de type entier contenant des valeurs NaN, Pandas les convertira automatiquement en virgule flottante. Les tentatives pour remplacer ce comportement à l'aide de fonctions telles que from_records() avec coerce_float=False ou des tableaux masqués NumPy se sont révélées infructueuses, conduisant à l'inévitable conversion en types de données flottants.
Solutions de contournement actuelles
Jusqu'à ce que NumPy et Pandas introduisent à l'avenir une prise en charge complète des valeurs NaN de type entier versions, la solution de contournement préférée consiste à représenter NaN sous la forme d'une valeur numérique distincte, telle que -999 ou 0. Cette approche permet de préserver les types de données entiers tout en indiquant les valeurs manquantes.
Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!

Python et C ont chacun leurs propres avantages, et le choix doit être basé sur les exigences du projet. 1) Python convient au développement rapide et au traitement des données en raison de sa syntaxe concise et de son typage dynamique. 2) C convient à des performances élevées et à une programmation système en raison de son typage statique et de sa gestion de la mémoire manuelle.

Le choix de Python ou C dépend des exigences du projet: 1) Si vous avez besoin de développement rapide, de traitement des données et de conception du prototype, choisissez Python; 2) Si vous avez besoin de performances élevées, de faible latence et de contrôle matériel, choisissez C.

En investissant 2 heures d'apprentissage Python chaque jour, vous pouvez améliorer efficacement vos compétences en programmation. 1. Apprenez de nouvelles connaissances: lire des documents ou regarder des tutoriels. 2. Pratique: Écrivez du code et complétez les exercices. 3. Revue: consolider le contenu que vous avez appris. 4. Pratique du projet: Appliquez ce que vous avez appris dans les projets réels. Un tel plan d'apprentissage structuré peut vous aider à maîtriser systématiquement Python et à atteindre des objectifs de carrière.

Les méthodes pour apprendre Python efficacement dans les deux heures incluent: 1. Passez en revue les connaissances de base et assurez-vous que vous connaissez l'installation de Python et la syntaxe de base; 2. Comprendre les concepts de base de Python, tels que les variables, les listes, les fonctions, etc.; 3. Master Basic et Advanced Utilisation en utilisant des exemples; 4. Apprenez des erreurs courantes et des techniques de débogage; 5. Appliquer l'optimisation des performances et les meilleures pratiques, telles que l'utilisation des compréhensions de la liste et le suivi du guide de style PEP8.

Python convient aux débutants et à la science des données, et C convient à la programmation système et au développement de jeux. 1. Python est simple et facile à utiliser, adapté à la science des données et au développement Web. 2.C fournit des performances et un contrôle élevés, adaptés au développement de jeux et à la programmation système. Le choix doit être basé sur les besoins du projet et les intérêts personnels.

Python est plus adapté à la science des données et au développement rapide, tandis que C est plus adapté aux performances élevées et à la programmation système. 1. La syntaxe Python est concise et facile à apprendre, adaptée au traitement des données et à l'informatique scientifique. 2.C a une syntaxe complexe mais d'excellentes performances et est souvent utilisée dans le développement de jeux et la programmation système.

Il est possible d'investir deux heures par jour pour apprendre Python. 1. Apprenez de nouvelles connaissances: apprenez de nouveaux concepts en une heure, comme les listes et les dictionnaires. 2. Pratique et pratique: utilisez une heure pour effectuer des exercices de programmation, tels que la rédaction de petits programmes. Grâce à une planification et à une persévérance raisonnables, vous pouvez maîtriser les concepts de base de Python en peu de temps.

Python est plus facile à apprendre et à utiliser, tandis que C est plus puissant mais complexe. 1. La syntaxe Python est concise et adaptée aux débutants. Le typage dynamique et la gestion automatique de la mémoire le rendent facile à utiliser, mais peuvent entraîner des erreurs d'exécution. 2.C fournit des fonctionnalités de contrôle de bas niveau et avancées, adaptées aux applications haute performance, mais a un seuil d'apprentissage élevé et nécessite une gestion manuelle de la mémoire et de la sécurité.


Outils d'IA chauds

Undresser.AI Undress
Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover
Outil d'IA en ligne pour supprimer les vêtements des photos.

Undress AI Tool
Images de déshabillage gratuites

Clothoff.io
Dissolvant de vêtements AI

Video Face Swap
Échangez les visages dans n'importe quelle vidéo sans effort grâce à notre outil d'échange de visage AI entièrement gratuit !

Article chaud

Outils chauds

MantisBT
Mantis est un outil Web de suivi des défauts facile à déployer, conçu pour faciliter le suivi des défauts des produits. Cela nécessite PHP, MySQL et un serveur Web. Découvrez nos services de démonstration et d'hébergement.

Version crackée d'EditPlus en chinois
Petite taille, coloration syntaxique, ne prend pas en charge la fonction d'invite de code

ZendStudio 13.5.1 Mac
Puissant environnement de développement intégré PHP

Navigateur d'examen sécurisé
Safe Exam Browser est un environnement de navigation sécurisé permettant de passer des examens en ligne en toute sécurité. Ce logiciel transforme n'importe quel ordinateur en poste de travail sécurisé. Il contrôle l'accès à n'importe quel utilitaire et empêche les étudiants d'utiliser des ressources non autorisées.

SublimeText3 version Mac
Logiciel d'édition de code au niveau de Dieu (SublimeText3)