


Produit cartésien performant (CROSS JOIN) avec Pandas
Dans le domaine de la manipulation de données, le produit cartésien, ou CROSS JOIN, est une opération précieuse qui combine deux ou plus de DataFrames sur une base un-à-un ou plusieurs-à-plusieurs. Cette opération étend l'ensemble de données d'origine en créant de nouvelles lignes pour toutes les combinaisons possibles d'éléments à partir des DataFrames d'entrée.
Énoncé du problème
Étant donné deux DataFrames avec des indices uniques :
left = pd.DataFrame({'col1': ['A', 'B', 'C'], 'col2': [1, 2, 3]}) right = pd.DataFrame({'col1': ['X', 'Y', 'Z'], 'col2': [20, 30, 50]})
Le but est de trouver la méthode la plus efficace pour calculer le produit cartésien de ces DataFrames, ce qui donne ce qui suit sortie :
col1_x col2_x col1_y col2_y 0 A 1 X 20 1 A 1 Y 30 2 A 1 Z 50 3 B 2 X 20 4 B 2 Y 30 5 B 2 Z 50 6 C 3 X 20 7 C 3 Y 30 8 C 3 Z 50
Solutions optimales
Méthode 1 : Colonne de clé temporaire
Une approche consiste à attribuer temporairement une colonne « clé » avec un valeur commune aux deux DataFrames :
left.assign(key=1).merge(right.assign(key=1), on='key').drop('key', 1)
Cette méthode utilise la fusion pour effectuer une JOIN plusieurs-à-plusieurs sur la colonne "clé".
Méthode 2 : produit cartésien NumPy
Pour les DataFrames plus grands, une solution performante consiste à utiliser l'implémentation du produit cartésien de NumPy :
def cartesian_product(*arrays): la = len(arrays) dtype = np.result_type(*arrays) arr = np.empty([len(a) for a in arrays] + [la], dtype=dtype) for i, a in enumerate(np.ix_(*arrays)): arr[...,i] = a return arr.reshape(-1, la)
Cette fonction génère toutes les combinaisons possibles d'éléments à partir de l'entrée tableaux.
Méthode 3 : CROSS JOIN généralisée
La solution généralisée fonctionne sur des DataFrames avec des indices non uniques ou mixtes :
def cartesian_product_generalized(left, right): la, lb = len(left), len(right) idx = cartesian_product(np.ogrid[:la], np.ogrid[:lb]) return pd.DataFrame( np.column_stack([left.values[idx[:,0]], right.values[idx[:,1]]]))
Ceci La méthode réindexe les DataFrames en fonction du produit cartésien de leurs indices.
Amélioré Solutions
Méthode 4 : CROSS JOIN simplifiée
Une solution simplifiée supplémentaire est possible pour deux DataFrames avec des types non mixtes :
def cartesian_product_simplified(left, right): la, lb = len(left), len(right) ia2, ib2 = np.broadcast_arrays(*np.ogrid[:la,:lb]) return pd.DataFrame( np.column_stack([left.values[ia2.ravel()], right.values[ib2.ravel()]]))
Ceci La méthode utilise la diffusion et l'ogrid de NumPy pour générer le produit cartésien des DataFrames indices.
Comparaison des performances
Les performances de ces solutions varient en fonction de la taille et de la complexité de l'ensemble de données. Le benchmark suivant fournit une comparaison relative de leur temps d'exécution :
# ... (Benchmarking code not included here)
Les résultats indiquent que la méthode cartesian_product basée sur NumPy surpasse les autres solutions dans la plupart des cas, d'autant plus que la taille des DataFrames augmente.
Conclusion
En tirant parti des techniques présentées, les analystes de données peuvent réaliser efficacement des produits cartésiens sur des DataFrames, une opération fondamentale pour la manipulation de données. et l'agrandissement. Ces méthodes permettent des performances optimales même sur des ensembles de données volumineux ou complexes, permettant une exploration et une analyse efficaces des données.
Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!

Solution aux problèmes d'autorisation Lors de la visualisation de la version Python dans Linux Terminal Lorsque vous essayez d'afficher la version Python dans Linux Terminal, entrez Python ...

Cet article explique comment utiliser la belle soupe, une bibliothèque Python, pour analyser HTML. Il détaille des méthodes courantes comme find (), find_all (), select () et get_text () pour l'extraction des données, la gestion de diverses structures et erreurs HTML et alternatives (Sel

La sérialisation et la désérialisation des objets Python sont des aspects clés de tout programme non trivial. Si vous enregistrez quelque chose dans un fichier Python, vous effectuez une sérialisation d'objets et une désérialisation si vous lisez le fichier de configuration, ou si vous répondez à une demande HTTP. Dans un sens, la sérialisation et la désérialisation sont les choses les plus ennuyeuses du monde. Qui se soucie de tous ces formats et protocoles? Vous voulez persister ou diffuser des objets Python et les récupérer dans son intégralité plus tard. C'est un excellent moyen de voir le monde à un niveau conceptuel. Cependant, à un niveau pratique, le schéma de sérialisation, le format ou le protocole que vous choisissez peut déterminer la vitesse, la sécurité, le statut de liberté de maintenance et d'autres aspects du programme

Cet article compare TensorFlow et Pytorch pour l'apprentissage en profondeur. Il détaille les étapes impliquées: préparation des données, construction de modèles, formation, évaluation et déploiement. Différences clés entre les cadres, en particulier en ce qui concerne le raisin informatique

Le module statistique de Python fournit de puissantes capacités d'analyse statistique de données pour nous aider à comprendre rapidement les caractéristiques globales des données, telles que la biostatistique et l'analyse commerciale. Au lieu de regarder les points de données un par un, regardez simplement des statistiques telles que la moyenne ou la variance pour découvrir les tendances et les fonctionnalités des données d'origine qui peuvent être ignorées et comparer les grands ensembles de données plus facilement et efficacement. Ce tutoriel expliquera comment calculer la moyenne et mesurer le degré de dispersion de l'ensemble de données. Sauf indication contraire, toutes les fonctions de ce module prennent en charge le calcul de la fonction moyenne () au lieu de simplement additionner la moyenne. Les nombres de points flottants peuvent également être utilisés. Importer au hasard Statistiques d'importation de fracTI

Ce tutoriel s'appuie sur l'introduction précédente à la belle soupe, en se concentrant sur la manipulation de Dom au-delà de la simple navigation sur les arbres. Nous explorerons des méthodes et techniques de recherche efficaces pour modifier la structure HTML. Une méthode de recherche DOM commune est ex

L'article traite des bibliothèques Python populaires comme Numpy, Pandas, Matplotlib, Scikit-Learn, Tensorflow, Django, Flask et Demandes, détaillant leurs utilisations dans le calcul scientifique, l'analyse des données, la visualisation, l'apprentissage automatique, le développement Web et H et H

Cet article guide les développeurs Python sur la construction d'interfaces de ligne de commande (CLI). Il détaille à l'aide de bibliothèques comme Typer, Click et Argparse, mettant l'accent sur la gestion des entrées / sorties et promouvant des modèles de conception conviviaux pour une meilleure convivialité par la CLI.


Outils d'IA chauds

Undresser.AI Undress
Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover
Outil d'IA en ligne pour supprimer les vêtements des photos.

Undress AI Tool
Images de déshabillage gratuites

Clothoff.io
Dissolvant de vêtements AI

AI Hentai Generator
Générez AI Hentai gratuitement.

Article chaud

Outils chauds

SublimeText3 version Mac
Logiciel d'édition de code au niveau de Dieu (SublimeText3)

Adaptateur de serveur SAP NetWeaver pour Eclipse
Intégrez Eclipse au serveur d'applications SAP NetWeaver.

MinGW - GNU minimaliste pour Windows
Ce projet est en cours de migration vers osdn.net/projects/mingw, vous pouvez continuer à nous suivre là-bas. MinGW : un port Windows natif de GNU Compiler Collection (GCC), des bibliothèques d'importation et des fichiers d'en-tête librement distribuables pour la création d'applications Windows natives ; inclut des extensions du runtime MSVC pour prendre en charge la fonctionnalité C99. Tous les logiciels MinGW peuvent fonctionner sur les plates-formes Windows 64 bits.

Dreamweaver CS6
Outils de développement Web visuel

Version Mac de WebStorm
Outils de développement JavaScript utiles