Choisir parmi map, applymap et apply dans Pandas
Lorsque vous travaillez avec Pandas DataFrames, il est souvent nécessaire d'appliquer des fonctions aux données de diverses manières. Trois méthodes couramment utilisées pour la vectorisation sont map, applymap et apply. Chacun a son propre objectif et sa propre application.
Map
map est une méthode spécifique aux objets Series et applique une fonction à chaque élément de la série. Il attend une fonction qui prend une seule valeur en entrée et renvoie une seule valeur.
Exemple :
import pandas as pd # Create a Series series = pd.Series([1, 2, 3, 4, 5]) # Apply a function to each element def square(x): return x**2 # Apply the function to the series using map squared_series = series.map(square) print(squared_series)
Sortie :
0 1 1 4 2 9 3 16 4 25 dtype: int64
Applymap
applymap applique une fonction à chaque élément d'un DataFrame, effectuant l'opération par élément. Comme map, il attend une fonction qui prend une seule valeur en entrée et renvoie une seule valeur.
Exemple :
# Create a DataFrame df = pd.DataFrame({'a': [1, 2, 3], 'b': [4, 5, 6]}) # Apply a function to each element of the DataFrame def format_number(x): return "{:.2f}".format(x) # Apply the function to the DataFrame using applymap formatted_df = df.applymap(format_number) print(formatted_df)
Sortie :
a b 0 1.00 4.00 1 2.00 5.00 2 3.00 6.00
Appliquer
apply applique une fonction à chaque ligne ou colonne d'un DataFrame, en fonction du paramètre d'axe. Il est plus polyvalent que map et applymap et peut gérer des fonctions qui nécessitent de transmettre plusieurs valeurs en entrées.
Exemple :
# Apply a function to each row of the DataFrame def get_max_min_diff(row): return row.max() - row.min() max_min_diff = df.apply(get_max_min_diff, axis=1) print(max_min_diff)
Sortie :
0 3.00 1 3.00 2 3.00 dtype: float64
Utilisation Résumé
- map : Application de fonction par élément à Series
- applymap : Application de fonction par élément à DataFrame
- apply : application de fonctions ligne/colonne à DataFrame, avec flexibilité gestion des entrées/sorties
Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!

ArraySareNenerallyMoreMemory Econtesious ANLILISTS INFORMAGE UNIMÉRIQUE DATADUETOTHEIRFIXED-SIZENATURANDDDIRECTMEMORYACCESS.1) ArraySstoreelementsInAconGuLblock, réduisant les listes de linge-ouvrages

ToconvertapyThonListoanArray, usethearraymodule: 1) ImportTheArraymodule, 2) Crééalist, 3) usearray (typecode, list) toconvertit, spécifiant le système de code pour la datte, améliorant la performance

Les listes Python peuvent stocker différents types de données. L'exemple de liste contient des entiers, des chaînes, des numéros de points flottants, des booléens, des listes imbriquées et des dictionnaires. La flexibilité de la liste est précieuse dans le traitement des données et le prototypage, mais il doit être utilisé avec prudence pour assurer la lisibilité et la maintenabilité du code.

PythondoSoSnothaveBuilt-inArrays; utEtHeArrayModuleformMory-EfficientHomoGeneousDatastorage, tandis que lestiné pour les dataTypes.

ThemostComMonlyUsedModuleforCreatingArraysInpyThonisNumpy.1) numpyprovidesefficientToolsforArrayoperations, IdealFornumericalData.2) ArraysCanBecatedUsingNp.Array () For1dand2Dstructures.3)

ToAppendementStoapyThonList, usetheAppend () methodforsingleelements, prolong () forulTipleElements, andInsert () forSpecificPositifs.1) useAppend () foraddingOneelementAtheend.2) useExtend () ToaddMultipleElementSEFFIENTLY.3)

TOCREATEAPYTHONLIST, USSquareBracket [] et SEPARateItemswithcommas.1) listsaredynynamicandcanholdmixeddatatypes.2) useAppend (), retire (), andslitingformMipulation.3) Listcomprehensationafficientforcereglists.4)

Dans les domaines de la finance, de la recherche scientifique, des soins médicaux et de l'IA, il est crucial de stocker et de traiter efficacement les données numériques. 1) En finance, l'utilisation de fichiers mappés de mémoire et de bibliothèques Numpy peut considérablement améliorer la vitesse de traitement des données. 2) Dans le domaine de la recherche scientifique, les fichiers HDF5 sont optimisés pour le stockage et la récupération des données. 3) Dans les soins médicaux, les technologies d'optimisation de la base de données telles que l'indexation et le partitionnement améliorent les performances des requêtes de données. 4) Dans l'IA, la fragmentation des données et la formation distribuée accélèrent la formation du modèle. Les performances et l'évolutivité du système peuvent être considérablement améliorées en choisissant les bons outils et technologies et en pesant les compromis entre les vitesses de stockage et de traitement.


Outils d'IA chauds

Undresser.AI Undress
Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover
Outil d'IA en ligne pour supprimer les vêtements des photos.

Undress AI Tool
Images de déshabillage gratuites

Clothoff.io
Dissolvant de vêtements AI

Video Face Swap
Échangez les visages dans n'importe quelle vidéo sans effort grâce à notre outil d'échange de visage AI entièrement gratuit !

Article chaud

Outils chauds

mPDF
mPDF est une bibliothèque PHP qui peut générer des fichiers PDF à partir de HTML encodé en UTF-8. L'auteur original, Ian Back, a écrit mPDF pour générer des fichiers PDF « à la volée » depuis son site Web et gérer différentes langues. Il est plus lent et produit des fichiers plus volumineux lors de l'utilisation de polices Unicode que les scripts originaux comme HTML2FPDF, mais prend en charge les styles CSS, etc. et présente de nombreuses améliorations. Prend en charge presque toutes les langues, y compris RTL (arabe et hébreu) et CJK (chinois, japonais et coréen). Prend en charge les éléments imbriqués au niveau du bloc (tels que P, DIV),

Télécharger la version Mac de l'éditeur Atom
L'éditeur open source le plus populaire

Listes Sec
SecLists est le compagnon ultime du testeur de sécurité. Il s'agit d'une collection de différents types de listes fréquemment utilisées lors des évaluations de sécurité, le tout en un seul endroit. SecLists contribue à rendre les tests de sécurité plus efficaces et productifs en fournissant facilement toutes les listes dont un testeur de sécurité pourrait avoir besoin. Les types de listes incluent les noms d'utilisateur, les mots de passe, les URL, les charges utiles floues, les modèles de données sensibles, les shells Web, etc. Le testeur peut simplement extraire ce référentiel sur une nouvelle machine de test et il aura accès à tous les types de listes dont il a besoin.

Adaptateur de serveur SAP NetWeaver pour Eclipse
Intégrez Eclipse au serveur d'applications SAP NetWeaver.

SublimeText3 version chinoise
Version chinoise, très simple à utiliser
