recherche
Maisondéveloppement back-endTutoriel PythonComment générer efficacement un flux infini de nombres premiers en Python ?

How to Efficiently Generate an Infinite Stream of Prime Numbers in Python?

Comment implémenter un générateur infini efficace de nombres premiers en Python ?

Un moyen efficace de générer une série infinie de nombres premiers est d'utiliser le tamis d'Eratosthène, qui élimine les nombres non premiers en marquant de manière itérative leurs multiples. Bien que cette méthode soit efficace, elle nécessite beaucoup de mémoire pour stocker les nombres marqués.

erat2

Voici la fonction erat2 du livre de recettes de la bibliothèque standard de Python, qui peut être utilisé pour générer une série infinie de nombres premiers numéros :

import itertools as it
def erat2( ):
    D = {  }
    yield 2
    for q in it.islice(it.count(3), 0, None, 2):
        p = D.pop(q, None)
        if p is None:
            D[q*q] = q
            yield q
        else:
            # old code here:
            # x = p + q
            # while x in D or not (x&1):
            #     x += p
            # changed into:
            x = q + 2*p
            while x in D:
                x += 2*p
            D[x] = p

erat2a

La fonction erat2 peut être encore optimisée en évitant les vérifications inutiles :

import itertools as it
def erat2a( ):
    D = {  }
    yield 2
    for q in it.islice(it.count(3), 0, None, 2):
        p = D.pop(q, None)
        if p is None:
            D[q*q] = q
            yield q
        else:
            # old code here:
            # x = p + q
            # while x in D or not (x&1):
            #     x += p
            # changed into:
            x = q + 2*p
            while x in D:
                x += 2*p
            D[x] = p

erat3

Pour des performances encore plus rapides, la fonction erat3 profite du fait que tous les nombres premiers (sauf 2, 3 et 5) modulo 30 ne donne que huit nombres spécifiques. Cela réduit considérablement le nombre de contrôles nécessaires pendant le processus de tamisage :

import itertools as it
def erat3( ):
    D = { 9: 3, 25: 5 }
    yield 2
    yield 3
    yield 5
    MASK= 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0,
    MODULOS= frozenset( (1, 7, 11, 13, 17, 19, 23, 29) )

    for q in it.compress(
            it.islice(it.count(7), 0, None, 2),
            it.cycle(MASK)):
        p = D.pop(q, None)
        if p is None:
            D[q*q] = q
            yield q
        else:
            x = q + 2*p
            while x in D or (x%30) not in MODULOS:
                x += 2*p
            D[x] = p

Ces optimisations peuvent entraîner des améliorations significatives des performances, en particulier lors de la génération de grands nombres premiers.

Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!

Déclaration
Le contenu de cet article est volontairement contribué par les internautes et les droits d'auteur appartiennent à l'auteur original. Ce site n'assume aucune responsabilité légale correspondante. Si vous trouvez un contenu suspecté de plagiat ou de contrefaçon, veuillez contacter admin@php.cn
Quels types de données peuvent être stockés dans un tableau Python?Quels types de données peuvent être stockés dans un tableau Python?Apr 27, 2025 am 12:11 AM

PythonlistScanstoreanyDatatype, ArrayModulearRaySstoreOneType, et NumpyArraysArnumericalComptations.1) ListesaSaSatilebutlessmemory-Efficient.2) NumpyArraySareMory-EfficientForHomoGeneousData.3)

Que se passe-t-il si vous essayez de stocker une valeur du mauvais type de données dans un tableau Python?Que se passe-t-il si vous essayez de stocker une valeur du mauvais type de données dans un tableau Python?Apr 27, 2025 am 12:10 AM

Lorsque vous vous assumez de la valeur de la valeur de la datyypie de la datyylethonarray.

Quelle partie fait partie de la bibliothèque standard Python: listes ou tableaux?Quelle partie fait partie de la bibliothèque standard Python: listes ou tableaux?Apr 27, 2025 am 12:03 AM

PythonlistSaReparmentofthestandardLibrary, tandis que les coloccules de colocède, tandis que les colocculations pour la base de la Parlementaire, des coloments de forage polyvalent, tandis que la fonctionnalité de la fonctionnalité nettement adressée.

Que devez-vous vérifier si le script s'exécute avec la mauvaise version Python?Que devez-vous vérifier si le script s'exécute avec la mauvaise version Python?Apr 27, 2025 am 12:01 AM

TheScriptSrunning withthewrongpythonversionDuetOincorrectDefaultInterpretersettings.tofixThis: 1) vérifiez laefaultpythonversionusingpython - Versionorpython3 - Version.2)

Quelles sont les opérations communes qui peuvent être effectuées sur des tableaux Python?Quelles sont les opérations communes qui peuvent être effectuées sur des tableaux Python?Apr 26, 2025 am 12:22 AM

PythonarRaySSupportVariousOperations: 1) SpecingExtractsSubSets, 2) A SPENDANT / EXPENSEDADDDSELLESS, 3) INSERtingPlaceSelelementsAtSpecific Positions, 4) RemovingdeleteSelements, 5) Sorting / ReversingChangeSes

Dans quels types d'applications les tableaux Numpy sont-ils couramment utilisés?Dans quels types d'applications les tableaux Numpy sont-ils couramment utilisés?Apr 26, 2025 am 12:13 AM

NumpyArraysAressentialFor Applications est en train de réaliser des objets de manière numérique et une datamanipulation.

Quand choisiriez-vous d'utiliser un tableau sur une liste dans Python?Quand choisiriez-vous d'utiliser un tableau sur une liste dans Python?Apr 26, 2025 am 12:12 AM

Useanarray.arrayoveralistinpythonwendealing withhomogeneousdata, performance-criticalcode, orinterfacingwithccode.1) homogeneousdata: ArraySaveMemorywithTypelements.2) performance-criticalcode

Toutes les opérations de liste sont-elles prises en charge par des tableaux, et vice versa? Pourquoi ou pourquoi pas?Toutes les opérations de liste sont-elles prises en charge par des tableaux, et vice versa? Pourquoi ou pourquoi pas?Apr 26, 2025 am 12:05 AM

Non, NotallListOperationsResaSupportedByArrays, andviceVersa.1) ArraysDonotsUpportDynamicOperationsLIKEAPENDORINSERSERTWithoutresizing, qui oblige la performance.2) Listes de la glate-enconteConStanttimecomplexityfordirectAccessLikEArraysDo.

See all articles

Outils d'IA chauds

Undresser.AI Undress

Undresser.AI Undress

Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover

AI Clothes Remover

Outil d'IA en ligne pour supprimer les vêtements des photos.

Undress AI Tool

Undress AI Tool

Images de déshabillage gratuites

Clothoff.io

Clothoff.io

Dissolvant de vêtements AI

Video Face Swap

Video Face Swap

Échangez les visages dans n'importe quelle vidéo sans effort grâce à notre outil d'échange de visage AI entièrement gratuit !

Outils chauds

Télécharger la version Mac de l'éditeur Atom

Télécharger la version Mac de l'éditeur Atom

L'éditeur open source le plus populaire

Dreamweaver CS6

Dreamweaver CS6

Outils de développement Web visuel

Version crackée d'EditPlus en chinois

Version crackée d'EditPlus en chinois

Petite taille, coloration syntaxique, ne prend pas en charge la fonction d'invite de code

Dreamweaver Mac

Dreamweaver Mac

Outils de développement Web visuel

SublimeText3 version anglaise

SublimeText3 version anglaise

Recommandé : version Win, prend en charge les invites de code !