recherche
Maisondéveloppement back-endTutoriel PythonLa sélection des parcelles Seaborn simplifiée : comment visualiser efficacement vos données

La visualisation des données est l'un des outils les plus puissants pour analyser et présenter des données. Seaborn, une bibliothèque Python construite sur Matplotlib, fournit une interface de haut niveau pour créer des visualisations informatives et diversifiées. Cet article vous guidera dans le choix de la bonne intrigue Seaborn, en la personnalisant pour plus de clarté et en évitant les pièges courants.

Pourquoi choisir le bon type de parcelle est important ?

Le type de graphique que vous choisissez a un impact direct sur l'efficacité avec laquelle vos données présentent leurs informations et leurs informations.

  • Un nuage de points révèle des corrélations entre les variables.

  • Une heatmap simplifie les comparaisons à grande échelle.

L'utilisation du mauvais type de tracé peut conduire à une mauvaise interprétation, et parfois les informations issues des données sont enterrées et ne sont jamais révélées parce que nous choisissons la mauvaise visualisation.

Comprendre les catégories de parcelles Seaborn

Les intrigues Seaborn se répartissent en trois catégories principales : Relationnel, Distribution et Catégorique. Voici comment choisir et utiliser chacun.

Seaborn Plot Selection Made Easy: How to Visualize Your Data Effectively
source :https://seaborn.pydata.org/_images/function_overview_8_0.png

1. Parcelles relationnelles

Les tracés relationnels visualisent la relation entre deux variables, généralement numériques. Seaborn propose deux principaux types de tracés relationnels : les nuages ​​de points et les tracés linéaires. Vous pouvez créer ces tracés en utilisant la fonctionrelplot().

sns.relplot(
    data=tips,
    x="total_bill", y="tip", hue="smoker",>



<p><img src="/static/imghwm/default1.png" data-src="https://img.php.cn/upload/article/000/000/000/173294521670198.jpg?x-oss-process=image/resize,p_40" class="lazy" alt="Seaborn Plot Selection Made Easy: How to Visualize Your Data Effectively"><br>
source: seaborn documentation</p>

<p>Alternatively, you can use the scatterplot() function directly for scatter plots, which produce the same result. For line plots, you can either use relplot() with kind="line" or the more direct lineplot() function.<br>
</p>

<pre class="brush:php;toolbar:false">fmri = sns.load_dataset("fmri")
sns.relplot(data=fmri, x="timepoint", y="signal", kind="line")

ou vous pouvez écrire comme ceci :

fmri = sns.load_dataset("fmri")
sns.lineplot(data=fmri, x="timepoint", y="signal")

Le résultat sera toujours le même.

Seaborn Plot Selection Made Easy: How to Visualize Your Data Effectively
source : documentation Seaborn

Les nuages ​​de points affichent des points de données individuels, ce qui facilite l'identification de modèles ou de corrélations. D'un autre côté, les tracés linéaires sont idéaux pour présenter les tendances au fil du temps ou entre catégories.

2. Parcelles de distribution

Comprendre la distribution des variables est une première étape essentielle dans l'analyse ou la modélisation des données. Les diagrammes de distribution sont conçus pour révéler la propagation ou la dispersion d'une seule variable. Ces visualisations peuvent rapidement répondre à des questions clés, telles que : Quelle plage couvrent les données ? Quelle est sa tendance centrale ? Les données sont-elles biaisées dans une direction particulière ?

Comme les tracés relationnels, les tracés de distribution peuvent être créés à l'aide de la fonction displot() en spécifiant le paramètre kind pour sélectionner le type de tracé souhaité. Alternativement, vous pouvez utiliser directement des fonctions comme histplot(), kdeplot(), ecdfplot() ou rugplot() pour des visualisations de distribution spécifiques.

La fonction histplot() est excellente pour visualiser les distributions de fréquences.

sns.relplot(
    data=tips,
    x="total_bill", y="tip", hue="smoker",>



<p><img src="/static/imghwm/default1.png" data-src="https://img.php.cn/upload/article/000/000/000/173294521670198.jpg?x-oss-process=image/resize,p_40" class="lazy" alt="Seaborn Plot Selection Made Easy: How to Visualize Your Data Effectively"><br>
source: seaborn documentation</p>

<p>Alternatively, you can use the scatterplot() function directly for scatter plots, which produce the same result. For line plots, you can either use relplot() with kind="line" or the more direct lineplot() function.<br>
</p>

<pre class="brush:php;toolbar:false">fmri = sns.load_dataset("fmri")
sns.relplot(data=fmri, x="timepoint", y="signal", kind="line")

Seaborn Plot Selection Made Easy: How to Visualize Your Data Effectively
source :documentation seaborn

Kdeplot() est plus adapté pour afficher des courbes de distribution lisses, tandis que ecdfplot() met l'accent sur les proportions cumulatives. rugplot() ajoute des marqueurs détaillés pour les points de données brutes, améliorant ainsi d'autres visualisations avec des détails plus fins.

Seaborn Plot Selection Made Easy: How to Visualize Your Data Effectively

Seaborn prend également en charge la visualisation des distributions bivariées à l'aide d'outils tels que heatmap(). Les Heatmaps sont particulièrement efficaces pour illustrer des matrices de corrélation ou faire des comparaisons.

Seaborn Plot Selection Made Easy: How to Visualize Your Data Effectively

3. Parcelles catégorielles

Les tracés catégoriels sont conçus pour visualiser des données organisées en catégories. L'approche générale pour créer ces tracés consiste à utiliser la fonction catplot(), en spécifiant le paramètre kind pour sélectionner le type de tracé souhaité. Ces parcelles sont classées en trois grandes familles.

Seaborn Plot Selection Made Easy: How to Visualize Your Data Effectively
Le choix du bon type d'intrigue catégorielle dépend de la question spécifique à laquelle vous souhaitez répondre. Ces graphiques offrent plusieurs perspectives pour analyser les données catégorielles :

- Nuages ​​de points catégoriels
Ces graphiques affichent des points de données individuels au sein de catégories, aidant ainsi à identifier des modèles ou des distributions. Les exemples incluent stripplot() etswarmplot().

fmri = sns.load_dataset("fmri")
sns.lineplot(data=fmri, x="timepoint", y="signal")

Seaborn Plot Selection Made Easy: How to Visualize Your Data Effectively
source : documentation Seaborn

- Parcelles de distribution catégorielles

Ces graphiques résument la répartition des données au sein des catégories, offrant un aperçu de la variabilité, de la propagation et des tendances centrales. Les exemples incluent boxplot(), violinplot() et boxenplot().

Seaborn Plot Selection Made Easy: How to Visualize Your Data Effectively

- Parcelles d'estimation catégorielle

Ces graphiques calculent des estimations agrégées (par exemple, moyenne) et incluent des barres d'erreur pour montrer la variabilité ou les intervalles de confiance. Les exemples incluent barplot(),pointplot() et countplot().

Seaborn Plot Selection Made Easy: How to Visualize Your Data Effectively

Comment choisir la bonne parcelle Seaborn

Avant de tracer, posez-vous ces questions :

Les données sont-elles catégoriques, numériques ou les deux ?

Explorez-vous des relations, des distributions ou des comparaisons ?

Quelle est la taille et l'échelle de l'ensemble de données ?

Connaître vos données vous guide vers les outils de visualisation les plus adaptés. Le schéma ci-dessous provient de Kaggle et montre comment choisir votre graphique en fonction du type de données dont vous disposez.

Seaborn Plot Selection Made Easy: How to Visualize Your Data Effectively
source : kaggle

Travaillons avec des données du monde réel pour rendre cela pratique. Considérons un ensemble de données de Kaggle contenant 20 colonnes, comprenant des fonctionnalités telles que les heures d'études, la fréquentation, l'implication parentale, l'accès aux ressources, les activités parascolaires, les heures de sommeil, les scores précédents, le niveau de motivation, l'accès à Internet, les séances de tutorat, le revenu familial, la qualité des enseignants, l'école. Type, influence des pairs, activité physique, troubles d'apprentissage, niveau d'éducation parentale, distance du domicile, sexe et résultat de l'examen.

  1. Comprenez vos données Commencez par analyser les types de variables de votre ensemble de données pour comprendre les données. Les variables numériques conviennent mieux aux diagrammes relationnels ou de distribution, tandis que les variables catégorielles fonctionnent bien pour le regroupement ou les comparaisons. Par exemple, vous pouvez utiliser un tracé linéaire pour analyser les tendances des performances en mathématiques en fonction de la fréquentation. De même, un histplot peut être utilisé pour examiner la répartition des heures de sommeil, aidant ainsi à déterminer si la plupart des élèves se reposent suffisamment.
sns.relplot(
    data=tips,
    x="total_bill", y="tip", hue="smoker",>



<p><img src="/static/imghwm/default1.png" data-src="https://img.php.cn/upload/article/000/000/000/173294521670198.jpg?x-oss-process=image/resize,p_40" class="lazy" alt="Seaborn Plot Selection Made Easy: How to Visualize Your Data Effectively"><br>
source: seaborn documentation</p>

<p>Alternatively, you can use the scatterplot() function directly for scatter plots, which produce the same result. For line plots, you can either use relplot() with kind="line" or the more direct lineplot() function.<br>
</p>

<pre class="brush:php;toolbar:false">fmri = sns.load_dataset("fmri")
sns.relplot(data=fmri, x="timepoint", y="signal", kind="line")

Seaborn Plot Selection Made Easy: How to Visualize Your Data Effectively

fmri = sns.load_dataset("fmri")
sns.lineplot(data=fmri, x="timepoint", y="signal")

Seaborn Plot Selection Made Easy: How to Visualize Your Data Effectively

  1. Définissez votre objectif Déterminez votre objectif en vous demandant quelles informations vous souhaitez transmettre. Vous souhaitez comparer des groupes ? Optez pour un tracé catégoriel comme un barplot ou un boxplot. Intéressé à explorer les relations? Un diagramme relationnel tel qu’un nuage de points est un excellent choix. Vous cherchez à comprendre la variabilité ? Optez pour un tracé de distribution comme un histplot. Par exemple, un nuage de points affiche efficacement la relation entre deux variables numériques, chaque point représentant une observation. Cela facilite la détection des corrélations, des clusters ou des valeurs aberrantes. Visualiser l'impact des heures étudiées sur les résultats des examens peut révéler si plus de temps d'étude est en corrélation avec des scores plus élevés.
sns.displot(penguins, x="flipper_length_mm", hue="sex", multiple="dodge")

Seaborn Plot Selection Made Easy: How to Visualize Your Data Effectively

  1. Faites correspondre l'intrigue à vos données et à votre objectif La sélection du tracé approprié pour vos données et vos objectifs d’analyse est essentielle. La bonne visualisation vous permet d’extraire efficacement des informations significatives. Par exemple, un tracé linéaire est plus adapté à l’observation des tendances au fil du temps qu’un histogramme. L’utilisation d’un graphique incorrect peut masquer des modèles ou des informations importantes, rendant même un ensemble de données riche moins utile. Par exemple, un barplot est idéal pour comparer les résultats moyens aux examens à différents niveaux d’implication parentale. Ce graphique met en évidence la moyenne (ou d'autres statistiques récapitulatives) d'une variable numérique dans toutes les catégories, ce qui le rend parfait pour les comparaisons de haut niveau.
sns.relplot(
    data=tips,
    x="total_bill", y="tip", hue="smoker",>



<p><img src="/static/imghwm/default1.png" data-src="https://img.php.cn/upload/article/000/000/000/173294521670198.jpg?x-oss-process=image/resize,p_40" class="lazy" alt="Seaborn Plot Selection Made Easy: How to Visualize Your Data Effectively"><br>
source: seaborn documentation</p>

<p>Alternatively, you can use the scatterplot() function directly for scatter plots, which produce the same result. For line plots, you can either use relplot() with kind="line" or the more direct lineplot() function.<br>
</p>

<pre class="brush:php;toolbar:false">fmri = sns.load_dataset("fmri")
sns.relplot(data=fmri, x="timepoint", y="signal", kind="line")

Seaborn Plot Selection Made Easy: How to Visualize Your Data Effectively

Conseils pour personnaliser les tracés Seaborn

Augmentez la clarté de vos visualisations en ajoutant des titres et des étiquettes à l'aide de fonctions telles que plt.title(), plt.xlabel() et plt.ylabel(). Pour incorporer des dimensions catégorielles, exploitez l'attribut hue dans Seaborn, qui vous permet de distinguer les points de données en fonction d'une colonne spécifique de votre ensemble de données. Personnalisez la palette de couleurs avec des palettes telles que coolwarm, husl ou Set2 en utilisant la fonction set_palette(). De plus, différenciez les points de données en ajustant leur style ou leur taille avec sns.set_theme() et en définissant les dimensions de la figure à l'aide de plt.figure(figsize=(width, height)).

Pièges courants à éviter

Pour communiquer efficacement des informations grâce à la visualisation des données, il est crucial de trouver un équilibre entre fournir suffisamment d'informations et éviter de surcharger les graphiques. Surcharger un graphique avec des points de données excessifs peut submerger les téléspectateurs, tandis que des détails insuffisants peuvent prêter à confusion. Incluez toujours des étiquettes d'axe claires et une légende, et assurez-vous que la visualisation met l'accent sur les informations clés que vous souhaitez mettre en évidence.

Un autre problème courant est la création de visualisations trompeuses. Pour éviter cela, assurez-vous que les axes sont correctement mis à l'échelle et avec précision pour représenter les données.

Seaborn Plot Selection Made Easy: How to Visualize Your Data Effectively

Conclusion

Sélectionner le bon tracé Seaborn est une étape critique pour améliorer la compréhension des données et communiquer efficacement les informations. La visualisation appropriée peut révéler des modèles, des relations et des tendances qui pourraient rester cachés. En alignant le type de tracé sur votre structure de données et vos objectifs d'analyse (qu'il s'agisse d'explorer des distributions, des relations ou des comparaisons), vous garantissez la clarté et la précision de votre narration.

La visualisation de données est autant un art qu'une science. N’hésitez pas à expérimenter différentes intrigues Seaborn pour découvrir de nouvelles perspectives ou affiner vos idées. Avec de la pratique et de la créativité, vous serez en mesure d'exploiter tout le potentiel de Seaborn pour transformer des données brutes en récits visuels convaincants.

Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!

Déclaration
Le contenu de cet article est volontairement contribué par les internautes et les droits d'auteur appartiennent à l'auteur original. Ce site n'assume aucune responsabilité légale correspondante. Si vous trouvez un contenu suspecté de plagiat ou de contrefaçon, veuillez contacter admin@php.cn
Comment utiliser Python pour trouver la distribution ZIPF d'un fichier texteComment utiliser Python pour trouver la distribution ZIPF d'un fichier texteMar 05, 2025 am 09:58 AM

Ce tutoriel montre comment utiliser Python pour traiter le concept statistique de la loi de Zipf et démontre l'efficacité de la lecture et du tri de Python de gros fichiers texte lors du traitement de la loi. Vous vous demandez peut-être ce que signifie le terme distribution ZIPF. Pour comprendre ce terme, nous devons d'abord définir la loi de Zipf. Ne vous inquiétez pas, je vais essayer de simplifier les instructions. La loi de Zipf La loi de Zipf signifie simplement: dans un grand corpus en langage naturel, les mots les plus fréquents apparaissent environ deux fois plus fréquemment que les deuxième mots fréquents, trois fois comme les troisième mots fréquents, quatre fois comme quatrième mots fréquents, etc. Regardons un exemple. Si vous regardez le corpus brun en anglais américain, vous remarquerez que le mot le plus fréquent est "th

Comment télécharger des fichiers dans PythonComment télécharger des fichiers dans PythonMar 01, 2025 am 10:03 AM

Python fournit une variété de façons de télécharger des fichiers à partir d'Internet, qui peuvent être téléchargés sur HTTP à l'aide du package ULLIB ou de la bibliothèque de demandes. Ce tutoriel expliquera comment utiliser ces bibliothèques pour télécharger des fichiers à partir des URL de Python. Bibliothèque de demandes Les demandes sont l'une des bibliothèques les plus populaires de Python. Il permet d'envoyer des demandes HTTP / 1.1 sans ajouter manuellement les chaînes de requête aux URL ou le codage de formulaire de post-données. La bibliothèque des demandes peut remplir de nombreuses fonctions, notamment: Ajouter des données de formulaire Ajouter un fichier en plusieurs parties Accéder aux données de réponse Python Faire une demande tête

Comment utiliser la belle soupe pour analyser HTML?Comment utiliser la belle soupe pour analyser HTML?Mar 10, 2025 pm 06:54 PM

Cet article explique comment utiliser la belle soupe, une bibliothèque Python, pour analyser HTML. Il détaille des méthodes courantes comme find (), find_all (), select () et get_text () pour l'extraction des données, la gestion de diverses structures et erreurs HTML et alternatives (Sel

Filtrage d'image en pythonFiltrage d'image en pythonMar 03, 2025 am 09:44 AM

Traiter avec des images bruyantes est un problème courant, en particulier avec des photos de téléphones portables ou de caméras basse résolution. Ce tutoriel explore les techniques de filtrage d'images dans Python à l'aide d'OpenCV pour résoudre ce problème. Filtrage d'image: un outil puissant Filtre d'image

Comment travailler avec des documents PDF à l'aide de PythonComment travailler avec des documents PDF à l'aide de PythonMar 02, 2025 am 09:54 AM

Les fichiers PDF sont populaires pour leur compatibilité multiplateforme, avec du contenu et de la mise en page cohérents sur les systèmes d'exploitation, les appareils de lecture et les logiciels. Cependant, contrairement aux fichiers de texte brut de traitement Python, les fichiers PDF sont des fichiers binaires avec des structures plus complexes et contiennent des éléments tels que des polices, des couleurs et des images. Heureusement, il n'est pas difficile de traiter les fichiers PDF avec les modules externes de Python. Cet article utilisera le module PYPDF2 pour montrer comment ouvrir un fichier PDF, imprimer une page et extraire du texte. Pour la création et l'édition des fichiers PDF, veuillez vous référer à un autre tutoriel de moi. Préparation Le noyau réside dans l'utilisation du module externe PYPDF2. Tout d'abord, l'installez en utilisant PIP: pip is p

Comment se cacher en utilisant Redis dans les applications DjangoComment se cacher en utilisant Redis dans les applications DjangoMar 02, 2025 am 10:10 AM

Ce tutoriel montre comment tirer parti de la mise en cache Redis pour augmenter les performances des applications Python, en particulier dans un cadre Django. Nous couvrirons l'installation redis, la configuration de Django et les comparaisons de performances pour mettre en évidence le bien

Présentation de la boîte à outils en langage naturel (NLTK)Présentation de la boîte à outils en langage naturel (NLTK)Mar 01, 2025 am 10:05 AM

Le traitement du langage naturel (PNL) est le traitement automatique ou semi-automatique du langage humain. La PNL est étroitement liée à la linguistique et a des liens vers la recherche en sciences cognitives, psychologie, physiologie et mathématiques. En informatique

Comment effectuer l'apprentissage en profondeur avec TensorFlow ou Pytorch?Comment effectuer l'apprentissage en profondeur avec TensorFlow ou Pytorch?Mar 10, 2025 pm 06:52 PM

Cet article compare TensorFlow et Pytorch pour l'apprentissage en profondeur. Il détaille les étapes impliquées: préparation des données, construction de modèles, formation, évaluation et déploiement. Différences clés entre les cadres, en particulier en ce qui concerne le raisin informatique

See all articles

Outils d'IA chauds

Undresser.AI Undress

Undresser.AI Undress

Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover

AI Clothes Remover

Outil d'IA en ligne pour supprimer les vêtements des photos.

Undress AI Tool

Undress AI Tool

Images de déshabillage gratuites

Clothoff.io

Clothoff.io

Dissolvant de vêtements AI

AI Hentai Generator

AI Hentai Generator

Générez AI Hentai gratuitement.

Article chaud

R.E.P.O. Crystals d'énergie expliqués et ce qu'ils font (cristal jaune)
2 Il y a quelques semainesBy尊渡假赌尊渡假赌尊渡假赌
Repo: Comment relancer ses coéquipiers
4 Il y a quelques semainesBy尊渡假赌尊渡假赌尊渡假赌
Hello Kitty Island Adventure: Comment obtenir des graines géantes
3 Il y a quelques semainesBy尊渡假赌尊渡假赌尊渡假赌

Outils chauds

DVWA

DVWA

Damn Vulnerable Web App (DVWA) est une application Web PHP/MySQL très vulnérable. Ses principaux objectifs sont d'aider les professionnels de la sécurité à tester leurs compétences et leurs outils dans un environnement juridique, d'aider les développeurs Web à mieux comprendre le processus de sécurisation des applications Web et d'aider les enseignants/étudiants à enseigner/apprendre dans un environnement de classe. Application Web sécurité. L'objectif de DVWA est de mettre en pratique certaines des vulnérabilités Web les plus courantes via une interface simple et directe, avec différents degrés de difficulté. Veuillez noter que ce logiciel

Télécharger la version Mac de l'éditeur Atom

Télécharger la version Mac de l'éditeur Atom

L'éditeur open source le plus populaire

Dreamweaver Mac

Dreamweaver Mac

Outils de développement Web visuel

PhpStorm version Mac

PhpStorm version Mac

Le dernier (2018.2.1) outil de développement intégré PHP professionnel

Listes Sec

Listes Sec

SecLists est le compagnon ultime du testeur de sécurité. Il s'agit d'une collection de différents types de listes fréquemment utilisées lors des évaluations de sécurité, le tout en un seul endroit. SecLists contribue à rendre les tests de sécurité plus efficaces et productifs en fournissant facilement toutes les listes dont un testeur de sécurité pourrait avoir besoin. Les types de listes incluent les noms d'utilisateur, les mots de passe, les URL, les charges utiles floues, les modèles de données sensibles, les shells Web, etc. Le testeur peut simplement extraire ce référentiel sur une nouvelle machine de test et il aura accès à tous les types de listes dont il a besoin.