Dans cet article, j'expliquerai comment j'ai construit un chatbot en utilisant le modèle Llama2 pour interroger intelligemment les données Excel.
Ce que nous construisons
- Charge un fichier Excel.
- Divise les données en morceaux gérables.
- Stocke les données dans une base de données vectorielle pour une récupération rapide.
- Utilisez un modèle Llama2 local pour répondre aux questions basées sur le contenu du fichier Excel.
Prérequis :
Python (≥ 3.8)
Bibliothèques : langchain, pandas, non structurées, Chroma
Étape 1 : Installer les dépendances
%pip install -q unstructured langchain %pip install -q "unstructured[all-docs]"
Étape 2 : Chargez le fichier Excel
import pandas as pd excel_path = "Book2.xlsx" if excel_path: df = pd.read_excel(excel_path) data = df.to_string(index=False) else: print("Upload an Excel file")
Étape 3 : divisez les données et stockez-les dans une base de données vectorielles
Les données texte volumineuses sont divisées en morceaux plus petits et se chevauchant pour une intégration et une interrogation efficaces. Ces morceaux sont stockés dans une base de données vectorielles Chroma.
from langchain_text_splitters import RecursiveCharacterTextSplitter from langchain_community.embeddings import OllamaEmbeddings from langchain_community.vectorstores import Chroma text_splitter = RecursiveCharacterTextSplitter(chunk_size=7500, chunk_overlap=100) chunks = text_splitter.split_text(data) embedding_model = OllamaEmbeddings(model="nomic-embed-text", show_progress=False) vector_db = Chroma.from_texts( texts=chunks, embedding=embedding_model, collection_name="local-rag" )
Étape 4 : initialiser le modèle Llama2
Nous utilisons ChatOllama pour charger le modèle Llama2 localement.
from langchain_community.chat_models import ChatOllama local_model = "llama2" llm = ChatOllama(model=local_model)
Étape 5 : Créer une invite de requête
Le chatbot répondra en fonction des noms de colonnes spécifiques du fichier Excel. Nous créons un modèle d'invite pour guider le modèle
from langchain.prompts import PromptTemplate QUERY_PROMPT = PromptTemplate( input_variables=["question"], template="""You are an AI assistant. Answer the user's questions based on the column names: Id, order_id, name, sales, refund, and status. Original question: {question}""" )
Étape 6 : configurer le Retriever
Nous configurons un récupérateur pour récupérer les morceaux pertinents de la base de données vectorielles, qui seront utilisés par le modèle Llama2 pour répondre aux questions.
from langchain.retrievers.multi_query import MultiQueryRetriever retriever = MultiQueryRetriever.from_llm( vector_db.as_retriever(), llm, prompt=QUERY_PROMPT )
Étape 7 : Construire la chaîne de réponse
La chaîne de réponse intègre :
- Un récupérateur pour récupérer le contexte.
- Une invite pour formater la question et le contexte.
- Le modèle Llama2 pour générer des réponses.
- Un analyseur de sortie pour formater la réponse.
from langchain.prompts import ChatPromptTemplate from langchain_core.runnables import RunnablePassthrough from langchain_core.output_parsers import StrOutputParser template = """Answer the question based ONLY on the following context: {context} Question: {question} """ prompt = ChatPromptTemplate.from_template(template) chain = ( {"context": retriever, "question": RunnablePassthrough()} | prompt | llm | StrOutputParser() )
Étape 8 : Posez une question
Nous sommes maintenant prêts à poser une question ! Voici comment nous invoquons la chaîne pour obtenir une réponse :
raw_result = chain.invoke("How many rows are there?") final_result = f"{raw_result}\n\nIf you have more questions, feel free to ask!" print(final_result)
Exemple de sortie
Lorsque j'ai exécuté le code ci-dessus sur un exemple de fichier Excel, voici ce que j'ai obtenu :
Based on the provided context, there are 10 rows in the table. If you have more questions, feel free to ask!
Conclusion:
Cette approche exploite la puissance des intégrations et du modèle Llama2 pour créer un chatbot intelligent et interactif pour les données Excel. Avec quelques ajustements, vous pouvez étendre cela pour fonctionner avec d'autres types de documents ou l'intégrer dans une application à part entière !
Vérifiez l'exemple de travail avec l'interface utilisateur sur mon LinkedIn :
Présentation de BChat Excel : un outil conversationnel basé sur l'IA pour les interactions avec des fichiers Excel
Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!

SlitingyPapyThonListIsDoneUsingTheSyntaxList [Démarrage: arrêt: étape] .He'showitworks: 1) startisheindexofthefirStelementoinclude.2) stopisTheIndexoftheFirstelementsoexclude.3) StepistheincrementBetweenselans.it'susefulfactingPortationSoListShsandCanusegeg

NumpyAllowsForvariousOperations ONARRAYS: 1) BasicarithmeticLikeaddition, Soustraction, Multiplication, anddivision; 2) AdvancedOperationSuchasmatrixMultiplication; 3) Element-Wiseoperations withoutExplicitloop

ArraySinpython, en particulier ThroughNumpyandPandas, aressentialfordataanalysis, offingspeeedAfficiency.1) numpyarrayablefficienthandlingoflargedatasetsandComplexOperationsLikEMoVingAverages.2)

ListsandNumpyArraysInpythonHaveDidifferentMemoryfootprints: listsaRemoreFlexibles Butlessmemory économe, tandis que la liste de résensés est-ce qui

ToenSurepythonscriptsBeHavecorrectlyAcrossDevelopment, mise en scène et production, catégories de type: 1) EnvironmentVariblesForsImplesettings, 2) ConfigurationFilesForComplexsetups et3) dynamicloadingforadaptability.eachMethodoffersNebeneFitsAndreCeresca

La syntaxe de base pour le découpage de la liste Python est la liste [Démarrage: arrêt: étape]. 1.Start est le premier index d'élément inclus, 2.STOP est le premier indice d'élément exclu et 3.StEP détermine la taille de l'étape entre les éléments. Les tranches sont non seulement utilisées pour extraire les données, mais aussi pour modifier et inverser les listes.

ListesoutPerformarRaySin: 1) dynamicingizingandfrequentinSertions / Deletions, 2) StoringheteroGeneousData, and3) MemoryEfficiencyForsparsedata, butmayhaveslightperformanceCostSincertorations.

Toconvertapythonarraytoalist, usethelist () Constructororageneratorexpression.1) ImportTheArrayModuleandCreateArray.2) Uselist (Arr) ou [Xforxinarr] à Convertittoalist, considérant la performance et le domaine de l'émie-efficacité pour les étages.


Outils d'IA chauds

Undresser.AI Undress
Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover
Outil d'IA en ligne pour supprimer les vêtements des photos.

Undress AI Tool
Images de déshabillage gratuites

Clothoff.io
Dissolvant de vêtements AI

Video Face Swap
Échangez les visages dans n'importe quelle vidéo sans effort grâce à notre outil d'échange de visage AI entièrement gratuit !

Article chaud

Outils chauds

Listes Sec
SecLists est le compagnon ultime du testeur de sécurité. Il s'agit d'une collection de différents types de listes fréquemment utilisées lors des évaluations de sécurité, le tout en un seul endroit. SecLists contribue à rendre les tests de sécurité plus efficaces et productifs en fournissant facilement toutes les listes dont un testeur de sécurité pourrait avoir besoin. Les types de listes incluent les noms d'utilisateur, les mots de passe, les URL, les charges utiles floues, les modèles de données sensibles, les shells Web, etc. Le testeur peut simplement extraire ce référentiel sur une nouvelle machine de test et il aura accès à tous les types de listes dont il a besoin.

Télécharger la version Mac de l'éditeur Atom
L'éditeur open source le plus populaire

Version crackée d'EditPlus en chinois
Petite taille, coloration syntaxique, ne prend pas en charge la fonction d'invite de code

PhpStorm version Mac
Le dernier (2018.2.1) outil de développement intégré PHP professionnel

DVWA
Damn Vulnerable Web App (DVWA) est une application Web PHP/MySQL très vulnérable. Ses principaux objectifs sont d'aider les professionnels de la sécurité à tester leurs compétences et leurs outils dans un environnement juridique, d'aider les développeurs Web à mieux comprendre le processus de sécurisation des applications Web et d'aider les enseignants/étudiants à enseigner/apprendre dans un environnement de classe. Application Web sécurité. L'objectif de DVWA est de mettre en pratique certaines des vulnérabilités Web les plus courantes via une interface simple et directe, avec différents degrés de difficulté. Veuillez noter que ce logiciel
