recherche
Maisondéveloppement back-endTutoriel PythonConstruire un chatbot simple avec LlamaChat avec Excel]

Dans cet article, j'expliquerai comment j'ai construit un chatbot en utilisant le modèle Llama2 pour interroger intelligemment les données Excel.

Building a Simple Chatbot with LlamaChat with Excel]

Ce que nous construisons

  1. Charge un fichier Excel.
  2. Divise les données en morceaux gérables.
  3. Stocke les données dans une base de données vectorielle pour une récupération rapide.
  4. Utilisez un modèle Llama2 local pour répondre aux questions basées sur le contenu du fichier Excel.

Prérequis :

Python (≥ 3.8)
Bibliothèques : langchain, pandas, non structurées, Chroma

Étape 1 : Installer les dépendances

%pip install -q unstructured langchain
%pip install -q "unstructured[all-docs]"

Étape 2 : Chargez le fichier Excel

import pandas as pd

excel_path = "Book2.xlsx"
if excel_path:
    df = pd.read_excel(excel_path)
    data = df.to_string(index=False)
else:
    print("Upload an Excel file")

Étape 3 : divisez les données et stockez-les dans une base de données vectorielles

Les données texte volumineuses sont divisées en morceaux plus petits et se chevauchant pour une intégration et une interrogation efficaces. Ces morceaux sont stockés dans une base de données vectorielles Chroma.

from langchain_text_splitters import RecursiveCharacterTextSplitter
from langchain_community.embeddings import OllamaEmbeddings
from langchain_community.vectorstores import Chroma

text_splitter = RecursiveCharacterTextSplitter(chunk_size=7500, chunk_overlap=100)
chunks = text_splitter.split_text(data)

embedding_model = OllamaEmbeddings(model="nomic-embed-text", show_progress=False)
vector_db = Chroma.from_texts(
    texts=chunks, 
    embedding=embedding_model,
    collection_name="local-rag"
)

Étape 4 : initialiser le modèle Llama2

Nous utilisons ChatOllama pour charger le modèle Llama2 localement.

from langchain_community.chat_models import ChatOllama

local_model = "llama2"
llm = ChatOllama(model=local_model)

Étape 5 : Créer une invite de requête

Le chatbot répondra en fonction des noms de colonnes spécifiques du fichier Excel. Nous créons un modèle d'invite pour guider le modèle

from langchain.prompts import PromptTemplate

QUERY_PROMPT = PromptTemplate(
    input_variables=["question"],
    template="""You are an AI assistant. Answer the user's questions based on the column names: 
    Id, order_id, name, sales, refund, and status. Original question: {question}"""
)

Étape 6 : configurer le Retriever

Nous configurons un récupérateur pour récupérer les morceaux pertinents de la base de données vectorielles, qui seront utilisés par le modèle Llama2 pour répondre aux questions.

from langchain.retrievers.multi_query import MultiQueryRetriever

retriever = MultiQueryRetriever.from_llm(
    vector_db.as_retriever(), 
    llm,
    prompt=QUERY_PROMPT
)

Étape 7 : Construire la chaîne de réponse

La chaîne de réponse intègre :

  1. Un récupérateur pour récupérer le contexte.
  2. Une invite pour formater la question et le contexte.
  3. Le modèle Llama2 pour générer des réponses.
  4. Un analyseur de sortie pour formater la réponse.
from langchain.prompts import ChatPromptTemplate
from langchain_core.runnables import RunnablePassthrough
from langchain_core.output_parsers import StrOutputParser

template = """Answer the question based ONLY on the following context:
{context}
Question: {question}
"""

prompt = ChatPromptTemplate.from_template(template)

chain = (
    {"context": retriever, "question": RunnablePassthrough()}
    | prompt
    | llm
    | StrOutputParser()
)

Étape 8 : Posez une question

Nous sommes maintenant prêts à poser une question ! Voici comment nous invoquons la chaîne pour obtenir une réponse :

raw_result = chain.invoke("How many rows are there?")
final_result = f"{raw_result}\n\nIf you have more questions, feel free to ask!"
print(final_result)

Exemple de sortie

Lorsque j'ai exécuté le code ci-dessus sur un exemple de fichier Excel, voici ce que j'ai obtenu :

Based on the provided context, there are 10 rows in the table.
If you have more questions, feel free to ask!

Conclusion:

Cette approche exploite la puissance des intégrations et du modèle Llama2 pour créer un chatbot intelligent et interactif pour les données Excel. Avec quelques ajustements, vous pouvez étendre cela pour fonctionner avec d'autres types de documents ou l'intégrer dans une application à part entière !

Vérifiez l'exemple de travail avec l'interface utilisateur sur mon LinkedIn :

Présentation de BChat Excel : un outil conversationnel basé sur l'IA pour les interactions avec des fichiers Excel

Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!

Déclaration
Le contenu de cet article est volontairement contribué par les internautes et les droits d'auteur appartiennent à l'auteur original. Ce site n'assume aucune responsabilité légale correspondante. Si vous trouvez un contenu suspecté de plagiat ou de contrefaçon, veuillez contacter admin@php.cn
Comment coupez-vous une liste de python?Comment coupez-vous une liste de python?May 02, 2025 am 12:14 AM

SlitingyPapyThonListIsDoneUsingTheSyntaxList [Démarrage: arrêt: étape] .He'showitworks: 1) startisheindexofthefirStelementoinclude.2) stopisTheIndexoftheFirstelementsoexclude.3) StepistheincrementBetweenselans.it'susefulfactingPortationSoListShsandCanusegeg

Quelles sont les opérations communes qui peuvent être effectuées sur des tableaux Numpy?Quelles sont les opérations communes qui peuvent être effectuées sur des tableaux Numpy?May 02, 2025 am 12:09 AM

NumpyAllowsForvariousOperations ONARRAYS: 1) BasicarithmeticLikeaddition, Soustraction, Multiplication, anddivision; 2) AdvancedOperationSuchasmatrixMultiplication; 3) Element-Wiseoperations withoutExplicitloop

Comment les tableaux sont-ils utilisés dans l'analyse des données avec Python?Comment les tableaux sont-ils utilisés dans l'analyse des données avec Python?May 02, 2025 am 12:09 AM

ArraySinpython, en particulier ThroughNumpyandPandas, aressentialfordataanalysis, offingspeeedAfficiency.1) numpyarrayablefficienthandlingoflargedatasetsandComplexOperationsLikEMoVingAverages.2)

Comment l'empreinte mémoire d'une liste se compare-t-elle à l'empreinte de la mémoire d'un tableau dans Python?Comment l'empreinte mémoire d'une liste se compare-t-elle à l'empreinte de la mémoire d'un tableau dans Python?May 02, 2025 am 12:08 AM

ListsandNumpyArraysInpythonHaveDidifferentMemoryfootprints: listsaRemoreFlexibles Butlessmemory économe, tandis que la liste de résensés est-ce qui

Comment gérez-vous les configurations spécifiques à l'environnement lors du déploiement de scripts Python exécutables?Comment gérez-vous les configurations spécifiques à l'environnement lors du déploiement de scripts Python exécutables?May 02, 2025 am 12:07 AM

ToenSurepythonscriptsBeHavecorrectlyAcrossDevelopment, mise en scène et production, catégories de type: 1) EnvironmentVariblesForsImplesettings, 2) ConfigurationFilesForComplexsetups et3) dynamicloadingforadaptability.eachMethodoffersNebeneFitsAndreCeresca

Comment trancher un tableau Python?Comment trancher un tableau Python?May 01, 2025 am 12:18 AM

La syntaxe de base pour le découpage de la liste Python est la liste [Démarrage: arrêt: étape]. 1.Start est le premier index d'élément inclus, 2.STOP est le premier indice d'élément exclu et 3.StEP détermine la taille de l'étape entre les éléments. Les tranches sont non seulement utilisées pour extraire les données, mais aussi pour modifier et inverser les listes.

Dans quelles circonstances les listes pourraient-elles mieux fonctionner que les tableaux?Dans quelles circonstances les listes pourraient-elles mieux fonctionner que les tableaux?May 01, 2025 am 12:06 AM

ListesoutPerformarRaySin: 1) dynamicingizingandfrequentinSertions / Deletions, 2) StoringheteroGeneousData, and3) MemoryEfficiencyForsparsedata, butmayhaveslightperformanceCostSincertorations.

Comment pouvez-vous convertir un tableau Python en une liste Python?Comment pouvez-vous convertir un tableau Python en une liste Python?May 01, 2025 am 12:05 AM

Toconvertapythonarraytoalist, usethelist () Constructororageneratorexpression.1) ImportTheArrayModuleandCreateArray.2) Uselist (Arr) ou [Xforxinarr] à Convertittoalist, considérant la performance et le domaine de l'émie-efficacité pour les étages.

See all articles

Outils d'IA chauds

Undresser.AI Undress

Undresser.AI Undress

Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover

AI Clothes Remover

Outil d'IA en ligne pour supprimer les vêtements des photos.

Undress AI Tool

Undress AI Tool

Images de déshabillage gratuites

Clothoff.io

Clothoff.io

Dissolvant de vêtements AI

Video Face Swap

Video Face Swap

Échangez les visages dans n'importe quelle vidéo sans effort grâce à notre outil d'échange de visage AI entièrement gratuit !

Outils chauds

Listes Sec

Listes Sec

SecLists est le compagnon ultime du testeur de sécurité. Il s'agit d'une collection de différents types de listes fréquemment utilisées lors des évaluations de sécurité, le tout en un seul endroit. SecLists contribue à rendre les tests de sécurité plus efficaces et productifs en fournissant facilement toutes les listes dont un testeur de sécurité pourrait avoir besoin. Les types de listes incluent les noms d'utilisateur, les mots de passe, les URL, les charges utiles floues, les modèles de données sensibles, les shells Web, etc. Le testeur peut simplement extraire ce référentiel sur une nouvelle machine de test et il aura accès à tous les types de listes dont il a besoin.

Télécharger la version Mac de l'éditeur Atom

Télécharger la version Mac de l'éditeur Atom

L'éditeur open source le plus populaire

Version crackée d'EditPlus en chinois

Version crackée d'EditPlus en chinois

Petite taille, coloration syntaxique, ne prend pas en charge la fonction d'invite de code

PhpStorm version Mac

PhpStorm version Mac

Le dernier (2018.2.1) outil de développement intégré PHP professionnel

DVWA

DVWA

Damn Vulnerable Web App (DVWA) est une application Web PHP/MySQL très vulnérable. Ses principaux objectifs sont d'aider les professionnels de la sécurité à tester leurs compétences et leurs outils dans un environnement juridique, d'aider les développeurs Web à mieux comprendre le processus de sécurisation des applications Web et d'aider les enseignants/étudiants à enseigner/apprendre dans un environnement de classe. Application Web sécurité. L'objectif de DVWA est de mettre en pratique certaines des vulnérabilités Web les plus courantes via une interface simple et directe, avec différents degrés de difficulté. Veuillez noter que ce logiciel