Maison >développement back-end >Tutoriel Python >Un moyen simple de trouver la complexité temporelle d'un algorithme
La complexité temporelle est considérée comme l'un des sujets les plus difficiles pour les débutants qui débutent tout juste en résolution de problèmes. Ici, je fournis l'aide-mémoire pour l'analyse de la complexité temporelle. J'espère que cela aide. S'il vous plaît laissez-moi savoir si vous avez des questions.
O(1) - Constant time O(log n) - Logarithmic (halving/doubling) O(n) - Linear (single loop) O(n log n) - Linearithmic (efficient sorting) O(n²) - Quadratic (nested loops) O(2ⁿ) - Exponential (recursive doubling) O(n!) - Factorial (permutations)
# Look for: - Direct array access - Basic math operations - Fixed loops - Hash table lookups # Examples: arr[0] x + y for i in range(5) hashmap[key]
# Look for: - Halving/Doubling - Binary search patterns - Tree traversal by level # Examples: while n > 0: n = n // 2 left, right = 0, len(arr)-1 while left <= right: mid = (left + right) // 2
# Look for: - Single loops - Array traversal - Linear search - Hash table building # Examples: for num in nums: # O(1) operation total += num for i in range(n): # O(1) operation arr[i] = i
# Look for: - Efficient sorting - Divide and conquer - Tree operations with traversal # Examples: nums.sort() sorted(nums) merge_sort(nums)
# Look for: - Nested loops - Simple sorting - Matrix traversal - Comparing all pairs # Examples: for i in range(n): for j in range(n): # O(1) operation # Pattern finding for i in range(n): for j in range(i+1, n): # Compare pairs
# Look for: - Double recursion - Power set - Fibonacci recursive - All subsets # Examples: def fib(n): if n <= 1: return n return fib(n-1) + fib(n-2) def subsets(nums): if not nums: return [[]] result = subsets(nums[1:]) return result + [nums[0:1] + r for r in result]
# O(1) arr[i] # Access arr.append(x) # Add end arr.pop() # Remove end # O(n) arr.insert(i, x) # Insert middle arr.remove(x) # Remove by value arr.index(x) # Find index min(arr), max(arr) # Find min/max
# O(1) average d[key] # Access d[key] = value # Insert key in d # Check existence d.get(key) # Get value # O(n) len(d) # Size d.keys() # Get keys d.values() # Get values
# O(n) s + t # Concatenation s.find(t) # Substring search s.replace(old, new) # Replace ''.join(list) # Join # O(n²) potential s += char # Repeated concatenation
# O(n) for i in range(n): # O(1) operations # O(n/2) = O(n) for i in range(0, n, 2): # Skip elements still O(n)
# O(n²) for i in range(n): for j in range(n): # O(1) operations # O(n * m) for i in range(n): for j in range(m): # Different sizes # O(n²/2) = O(n²) for i in range(n): for j in range(i, n): # Triangular still O(n²)
# O(n + m) for i in range(n): # O(1) for j in range(m): # O(1) # O(n + n²) = O(n²) for i in range(n): # O(1) for i in range(n): for j in range(n): # O(1)
# O(n) def factorial(n): if n <= 1: return 1 return n * factorial(n-1)
# O(2ⁿ) def fibonacci(n): if n <= 1: return n return fibonacci(n-1) + fibonacci(n-2)
# O(n log n) def mergeSort(arr): if len(arr) <= 1: return arr mid = len(arr) // 2 left = mergeSort(arr[:mid]) right = mergeSort(arr[mid:]) return merge(left, right)
# String operations for c in string: newStr += c # O(n²) # List comprehension [x for x in range(n) for y in range(n)] # O(n²)
len() # O(1) min(), max() # O(n) sorted() # O(n log n) list.index() # O(n)
Merci d'avoir lu, merci de laisser un pouce bleu sur le message si vous avez trouvé cela utile. Bravo !
Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!