Maison > Article > développement back-end > Notation Big O - Python
Notation mathématique qui décrit la limite supérieure du temps d'exécution ou de l'utilisation de l'espace d'un algorithme. Il est noté O(f(n)), où f(n) est une fonction qui représente le temps ou l'espace en fonction de la taille de l'entrée n .
Pour plus d'informations, visitez : http://bigoheatsheet.com
Exemple :
import timeit import matplotlib.pyplot as plt import cProfile # O(1) def constant_time_operation(): return 42 # O(log n) def logarithmic_time_operation(n): count = 0 while n > 1: n //= 2 count += 1 return count # O(n) def linear_time_operation(n): total = 0 for i in range(n): total += i return total # O(n log n) def linear_logarithmic_time_operation(n): if n <= 1: return n else: return linear_logarithmic_time_operation(n - 1) + n # O(n^2) def quadratic_time_operation(n): total = 0 for i in range(n): for j in range(n): total += i + j return total # O(2^n) def exponential_time_operation(n): if n <= 1: return 1 else: return exponential_time_operation(n - 1) + exponential_time_operation(n - 1) # O(n!) def factorial_time_operation(n): if n == 0: return 1 else: return n * factorial_time_operation(n - 1) # Function to measure execution time using timeit def measure_time(func, *args): execution_time = timeit.timeit(lambda: func(*args), number=1000) return execution_time def plot_results(results): functions, times = zip(*results) colors = ['skyblue', 'orange', 'green', 'red', 'purple', 'brown', 'pink'] plt.figure(figsize=(14, 8)) plt.bar(functions, times, color=colors) for i, v in enumerate(times): plt.text(i, v + 0.5, f"{v:.6f}", ha='center', va='bottom', rotation=0, color='black') plt.xlabel('Function Complexity') plt.ylabel('Average Time (s)') plt.title('Execution Time of Different Algorithm Complexities') plt.grid(axis='y', linestyle='--', linewidth=0.5, color='gray', alpha=0.5) plt.tight_layout() plt.show() def main(): results = [] results.append(("O(1)", measure_time(constant_time_operation))) results.append(("O(log n)", measure_time(logarithmic_time_operation, 10))) results.append(("O(n)", measure_time(linear_time_operation, 10))) results.append(("O(n log n)", measure_time( linear_logarithmic_time_operation, 10))) results.append(("O(n^2)", measure_time(quadratic_time_operation, 7))) results.append(("O(2^n)", measure_time(exponential_time_operation, 7))) results.append(("O(n!)", measure_time(factorial_time_operation, 112))) plot_results(results) if __name__ == '__main__': cProfile.run("main()", sort="totime", filename="output_profile.prof")
N'oubliez pas qu'il ne suffit pas d'appliquer simplement une grande notation ou, bien que ce soit la première étape, il existe d'autres moyens d'optimiser la mémoire, par exemple l'utilisation de emplacements, de cache, de threads, de parallélisme, processus, etc.
Merci d'avoir lu !!
Soutenez-moi en réagissant et en donnant votre avis.
Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!