Maison > Article > développement back-end > Concepts POO en Python pour les programmeurs C 98
Voici une démonstration complète des concepts de POO en Python pour un programmeur C 98 :
# Privado por convenção: _underscore_simples # "Realmente privado": __underscore_duplo (name mangling) # Público: sem underscore from abc import abstractmethod class Animal(ABC): # Em python, variáveis declaradas no escopo da classe e não dentro de um # método específico, são automaticamente compartilhadas por todas instâncias. species_count = 0 # além disso, elas podem ser inicializadas diretamente dentro da classe. # Construtor def __init__(self, name): # Variáveis de instância self.name = name # público self._age = 0 # protegido por convenção self.__id = id(self) # privado (mas você consegue acessar com name mangling) Animal.species_count += 1 # Destrutor def __del__(self): Animal.species_count -= 1 # Método regular @abstractmethod def make_sound(self): pass # Equivalente a um método abstrato/virtual (deve ser implementado apenas nas classes filhas) # Método estático (não precisa da instância para ser utilizado, nem utiliza seus atributos) @staticmethod def get_kingdom(): return "Animalia" # Método de classe (recebe a classe como primeiro argumento, pode acessar atributos da classe) @classmethod def get_species_count(cls): return cls.species_count # Decorador de propriedade (getter) @property def age(self): return self._age # Decorador de propriedade (setter) @age.setter def age(self, value): if value >= 0: self._age = value # Métodos especiais (sobrecarga de operadores) def __str__(self): # Como toString() - para string legível return f"Animal named {self.name}" def __repr__(self): # Para debugging return f"Animal(name='{self.name}')" def __eq__(self, other): # Operador de comparação == return isinstance(other, Animal) and self.name == other.name def __len__(self): # Função len() return self._age def __getitem__(self, key): # Operador de acesso [] if key == 'name': return self.name raise KeyError(key)
#include <iostream> #include <string> #include <sstream> class Animal { public: static int species_count; Animal(const std::string& name) : name(name), _age(0), __id(++id_counter) { // construtor ++species_count; } ~Animal() { // destrutor --species_count; } virtual void make_sound() = 0; // Método não implementável na classe base (virtual/abstrato) static std::string get_kingdom() { // Não existe distinção entre // @classmethod e @staticmethod em cpp, apenas static methods. return "Animalia"; } // static methods podem ser utilizados sem instanciar uma classe e têm // acesso às propriedades estáticas da classe: static int get_species_count() { return species_count; } // getter: int get_age() const { return _age; } // setter: void set_age(int age) { if (age >= 0) { _age = age; } } // Implementação dos métodos especiais que vimos em python: std::string to_string() const { return "Animal named " + name; } std::string repr() const { std::ostringstream oss; oss << "Animal(name='" << name << "', age=" << _age << ",> <h2> Herança </h2> <h3> Python </h3> <pre class="brush:php;toolbar:false">class Dog(Animal): def __init__(self, name, breed): # Chama o construtor da classe pai super().__init__(name) self.breed = breed # Sobrescreve o método da classe pai def make_sound(self): return "Woof!"
class Dog : public Animal { public: Dog(const std::string& name, const std::string& breed) : Animal(name), breed(breed) {} void make_sound() override { std::cout << "Woof!" << std::endl; } private: std::string breed; };
class Pet: def is_vaccinated(self): return True class DomesticDog(Dog, Pet): pass
class Pet { public: bool is_vaccinated() const { return true; } }; class DomesticDog : public Dog, public Pet { public: DomesticDog(const std::string& name, const std::string& breed) : Dog(name, breed) {} };
from abc import ABC, abstractmethod class Shape(ABC): @abstractmethod def area(self): pass
class Shape { public: virtual ~Shape() {} virtual double area() const = 0; };
if __name__ == "__main__": # Cria objetos dog = Dog("Rex", "Golden Retriever") # Acessa atributos print(dog.name) # Público print(dog._age) # Protegido (ainda acessível) # print(dog.__id) # Isso falhará print(dog._Animal__id) # Isso funciona (acessando attribute privado com name mangling) # Propriedades dog.age = 5 # Usa setter automaticamente print(dog.age) # Usa getter automaticamente # Métodos estáticos e de classe print(Animal.get_kingdom()) print(Animal.get_species_count()) # Verifica herança print(isinstance(dog, Animal)) # True print(issubclass(Dog, Animal)) # True # Métodos especiais em ação print(str(dog)) # Usa __str__ print(repr(dog)) # Usa __repr__ print(len(dog)) # Usa __len__ print(dog['name']) # Usa __getitem__
int main() { // Cria objetos Dog dog("Rex", "Golden Retriever"); // Acessa atributos std::cout << dog.name << std::endl; // Público std::cout << dog.get_age() << std::endl; // Protegido (ainda acessível) // std::cout << dog.__id << std::endl; // Isso falhará (privado) // Propriedades dog.set_age(5); // Usa setter std::cout << dog.get_age() << std::endl; // Usa getter // Métodos estáticos e de classe std::cout << Animal::get_kingdom() << std::endl; std::cout << Animal::get_species_count() << std::endl; // Equivalente aos "métodos especiais": // Verifica herança if (dog.isinstance<Animal>()) { std::cout << "dog é uma instância de Animal" << std::endl; } std::cout << dog.to_string() << std::endl; // Usa to_string std::cout << dog.repr() << std::endl; // Usa repr std::cout << dog["name"] << std::endl; // Usa operador [] }
Utilisez dir(object) pour voir tous les attributs et méthodes d'un objet, et help(object) pour la documentation.
Animal . ' , _______ _ .`_|___|_`. _ Pet \ \ / / WorkingAnimal \ ' ' / \ " / \./ DomesticDog
L'héritage diamant se produit lorsqu'une classe hérite de deux classes qui, à leur tour, héritent d'une classe de base commune. Cela peut poser plusieurs problèmes :
class Animal { public: Animal() { std::cout << "Animal constructor" << std::endl; } virtual void make_sound() { std::cout << "Some generic animal sound" << std::endl; } }; class Pet : public Animal { public: Pet() : Animal() { std::cout << "Pet constructor" << std::endl; } void make_sound() override { std::cout << "Pet sound" << std::endl; } }; class WorkingAnimal : public Animal { public: WorkingAnimal() : Animal() { std::cout << "WorkingAnimal constructor" << std::endl; } void make_sound() override { std::cout << "Working animal sound" << std::endl; } }; class DomesticDog : public Pet, public WorkingAnimal { public: DomesticDog() : Animal(), Pet(), WorkingAnimal() { std::cout << "DomesticDog constructor" << std::endl; } void make_sound() override { Pet::make_sound(); // Ou WorkingAnimal::make_sound(), dependendo do comportamento desejado } }; int main() { DomesticDog dog; dog.make_sound(); return 0; }
Animal constructor Pet constructor WorkingAnimal constructor DomesticDog constructor Pet sound
Dans cet exemple, DomesticDog hérite de Pet et WorkingAnimal, qui héritent tous deux d'Animal. Cela crée un diamant héritage. L'héritage virtuel est utilisé pour éviter la duplication et l'ambiguïté des données.
Python utilise l'ordre de résolution de méthode (MRO) avec la linéarisation C3 pour résoudre automatiquement les problèmes d'héritage de diamant. MRO détermine l'ordre dans lequel les classes sont vérifiées lors de la recherche d'une méthode ou d'un attribut.
# Privado por convenção: _underscore_simples # "Realmente privado": __underscore_duplo (name mangling) # Público: sem underscore from abc import abstractmethod class Animal(ABC): # Em python, variáveis declaradas no escopo da classe e não dentro de um # método específico, são automaticamente compartilhadas por todas instâncias. species_count = 0 # além disso, elas podem ser inicializadas diretamente dentro da classe. # Construtor def __init__(self, name): # Variáveis de instância self.name = name # público self._age = 0 # protegido por convenção self.__id = id(self) # privado (mas você consegue acessar com name mangling) Animal.species_count += 1 # Destrutor def __del__(self): Animal.species_count -= 1 # Método regular @abstractmethod def make_sound(self): pass # Equivalente a um método abstrato/virtual (deve ser implementado apenas nas classes filhas) # Método estático (não precisa da instância para ser utilizado, nem utiliza seus atributos) @staticmethod def get_kingdom(): return "Animalia" # Método de classe (recebe a classe como primeiro argumento, pode acessar atributos da classe) @classmethod def get_species_count(cls): return cls.species_count # Decorador de propriedade (getter) @property def age(self): return self._age # Decorador de propriedade (setter) @age.setter def age(self, value): if value >= 0: self._age = value # Métodos especiais (sobrecarga de operadores) def __str__(self): # Como toString() - para string legível return f"Animal named {self.name}" def __repr__(self): # Para debugging return f"Animal(name='{self.name}')" def __eq__(self, other): # Operador de comparação == return isinstance(other, Animal) and self.name == other.name def __len__(self): # Função len() return self._age def __getitem__(self, key): # Operador de acesso [] if key == 'name': return self.name raise KeyError(key)
#include <iostream> #include <string> #include <sstream> class Animal { public: static int species_count; Animal(const std::string& name) : name(name), _age(0), __id(++id_counter) { // construtor ++species_count; } ~Animal() { // destrutor --species_count; } virtual void make_sound() = 0; // Método não implementável na classe base (virtual/abstrato) static std::string get_kingdom() { // Não existe distinção entre // @classmethod e @staticmethod em cpp, apenas static methods. return "Animalia"; } // static methods podem ser utilizados sem instanciar uma classe e têm // acesso às propriedades estáticas da classe: static int get_species_count() { return species_count; } // getter: int get_age() const { return _age; } // setter: void set_age(int age) { if (age >= 0) { _age = age; } } // Implementação dos métodos especiais que vimos em python: std::string to_string() const { return "Animal named " + name; } std::string repr() const { std::ostringstream oss; oss << "Animal(name='" << name << "', age=" << _age << ",> <h2> Herança </h2> <h3> Python </h3> <pre class="brush:php;toolbar:false">class Dog(Animal): def __init__(self, name, breed): # Chama o construtor da classe pai super().__init__(name) self.breed = breed # Sobrescreve o método da classe pai def make_sound(self): return "Woof!"
Dans cet exemple, Python résout automatiquement l'héritage des diamants à l'aide de MRO. Vous pouvez vérifier MRO en utilisant l'attribut __mro__:
class Dog : public Animal { public: Dog(const std::string& name, const std::string& breed) : Animal(name), breed(breed) {} void make_sound() override { std::cout << "Woof!" << std::endl; } private: std::string breed; };
MRO en Python garantit que DomesticDog hérite correctement de Pet et WorkingAnimal, et qu'Animal est résolu avant l'objet. L'ordre de déclaration influence donc le MRO, mais la linéarisation C3 garantit le respect de la hiérarchie.
class Pet: def is_vaccinated(self): return True class DomesticDog(Dog, Pet): pass
class Pet { public: bool is_vaccinated() const { return true; } }; class DomesticDog : public Dog, public Pet { public: DomesticDog(const std::string& name, const std::string& breed) : Dog(name, breed) {} };
from abc import ABC, abstractmethod class Shape(ABC): @abstractmethod def area(self): pass
class Shape { public: virtual ~Shape() {} virtual double area() const = 0; };
if __name__ == "__main__": # Cria objetos dog = Dog("Rex", "Golden Retriever") # Acessa atributos print(dog.name) # Público print(dog._age) # Protegido (ainda acessível) # print(dog.__id) # Isso falhará print(dog._Animal__id) # Isso funciona (acessando attribute privado com name mangling) # Propriedades dog.age = 5 # Usa setter automaticamente print(dog.age) # Usa getter automaticamente # Métodos estáticos e de classe print(Animal.get_kingdom()) print(Animal.get_species_count()) # Verifica herança print(isinstance(dog, Animal)) # True print(issubclass(Dog, Animal)) # True # Métodos especiais em ação print(str(dog)) # Usa __str__ print(repr(dog)) # Usa __repr__ print(len(dog)) # Usa __len__ print(dog['name']) # Usa __getitem__
int main() { // Cria objetos Dog dog("Rex", "Golden Retriever"); // Acessa atributos std::cout << dog.name << std::endl; // Público std::cout << dog.get_age() << std::endl; // Protegido (ainda acessível) // std::cout << dog.__id << std::endl; // Isso falhará (privado) // Propriedades dog.set_age(5); // Usa setter std::cout << dog.get_age() << std::endl; // Usa getter // Métodos estáticos e de classe std::cout << Animal::get_kingdom() << std::endl; std::cout << Animal::get_species_count() << std::endl; // Equivalente aos "métodos especiais": // Verifica herança if (dog.isinstance<Animal>()) { std::cout << "dog é uma instância de Animal" << std::endl; } std::cout << dog.to_string() << std::endl; // Usa to_string std::cout << dog.repr() << std::endl; // Usa repr std::cout << dog["name"] << std::endl; // Usa operador [] }
Merci d'avoir suivi ce guide sur les concepts de POO en Python et C 98. Nous espérons qu'il vous a été utile pour votre parcours d'apprentissage. Si vous avez aimé le contenu, laissez votre commentaire, aimez et partagez avec vos amis et collègues. Si vous avez trouvé une erreur, laissez votre commentaire et je la corrigerai ! À la prochaine fois !
Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!