


L'importance de la copie de trames de données dans Pandas
Scénario :
Lors de la sélection d'un sous-ensemble d'un DataFrame, il est courant pour rencontrer du code qui fait explicitement une copie du DataFrame parent à l'aide de la méthode .copy(). La question se pose : pourquoi est-ce nécessaire ?
Raisonnement :
Les dataframes Pandas se comportent différemment des tableaux de langages de programmation traditionnels. Lors de l'indexation d'un DataFrame pandas (par exemple, my_dataframe[features_list]), la valeur renvoyée ne crée pas de nouvelle copie mais renvoie plutôt une vue ou une référence au DataFrame d'origine. Toute modification apportée à cette vue affectera directement le DataFrame d'origine.
Exemple :
Considérez le code suivant :
df = pd.DataFrame({'x': [1, 2]}) df_view = df[0:1] # Returns a view of the first row df_view['x'] = -1 # Check the original DataFrame print(df)
Sortie :
x 0 -1 1 2
Comme vous pouvez le constater, la modification de df_view a également modifié le df DataFrame d'origine.
Solution :
Pour éviter de telles conséquences involontaires, il est recommandé pour faire une copie du DataFrame à l'aide de la méthode .copy() avant de le modifier. Cela garantit que toute modification apportée à la copie n'affectera pas le DataFrame d'origine.
Code révisé :
df = pd.DataFrame({'x': [1, 2]}) df_copy = df[0:1].copy() # Makes a copy of the first row df_copy['x'] = -1 # Check the original DataFrame print(df)
Sortie :
x 0 1 1 2
Dans ce cas, df reste inchangé.
Avantages de la copie de trames de données :
- Protection des données originales : Empêche les modifications accidentelles au DataFrame parent.
- Isolement des données : Permet des opérations indépendantes sur différents sous-ensembles d'un DataFrame.
- Performances améliorées : La copie permet des optimisations en isolant les données qui ne sont pas nécessaires aux opérations en cours.
Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!

ForhandlingLargedatasetSInpython, UsenumpyArraysforbetterperformance.1) NumpyArraysAremeMory-EfficientAndFasterFornumericalOperations.2) EvitUnneceSsaryTypeConversions.3) Le effet de levier

Inpython, listSusedynamicMemoryallocation withover-allocation, whileLumpyArraySallocateFixedMemory.1) listsallocatemoreMoryThreededEdededInitialement, redimensipwenessary.2) NumpyArraySallocateExactMemoryForElements, offrantwectable usinessflexibilité.

Inpython, YouCanscthedatatatypeyfelemememedenernSspant.1) usenpynernrump.1) usenpynerp.dloatp.ploatm64, formateur préséconstrolatatype.

NumpyissentialFornumericalComputingInpythondutOtsSpeed, MemoryEfficiency et ComprehenSiveMathematicalFunctions.1) It'sfastBecauseitPerformSoperations INC.2) NumpyArraySareMoremory-EfficientThanpythonlists.3)

ContigusMymoryallocationiscrucialforAraySBauseitallowsforefficient andfastelementAccess.1) iTenablesConstanttimeAccess, o (1), duetoDirectAddressCalculation.2) itimproveScacheefficiendyAllowingMultipleElementFetchesperCacheline.3) itsimplieniesMemorymorymorymorymorymory

SlitingyPapyThonListIsDoneUsingTheSyntaxList [Démarrage: arrêt: étape] .He'showitworks: 1) startisheindexofthefirStelementoinclude.2) stopisTheIndexoftheFirstelementsoexclude.3) StepistheincrementBetweenselans.it'susefulfactingPortationSoListShsandCanusegeg

NumpyAllowsForvariousOperations ONARRAYS: 1) BasicarithmeticLikeaddition, Soustraction, Multiplication, anddivision; 2) AdvancedOperationSuchasmatrixMultiplication; 3) Element-Wiseoperations withoutExplicitloop

ArraySinpython, en particulier ThroughNumpyandPandas, aressentialfordataanalysis, offingspeeedAfficiency.1) numpyarrayablefficienthandlingoflargedatasetsandComplexOperationsLikEMoVingAverages.2)


Outils d'IA chauds

Undresser.AI Undress
Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover
Outil d'IA en ligne pour supprimer les vêtements des photos.

Undress AI Tool
Images de déshabillage gratuites

Clothoff.io
Dissolvant de vêtements AI

Video Face Swap
Échangez les visages dans n'importe quelle vidéo sans effort grâce à notre outil d'échange de visage AI entièrement gratuit !

Article chaud

Outils chauds

SublimeText3 version chinoise
Version chinoise, très simple à utiliser

MantisBT
Mantis est un outil Web de suivi des défauts facile à déployer, conçu pour faciliter le suivi des défauts des produits. Cela nécessite PHP, MySQL et un serveur Web. Découvrez nos services de démonstration et d'hébergement.

MinGW - GNU minimaliste pour Windows
Ce projet est en cours de migration vers osdn.net/projects/mingw, vous pouvez continuer à nous suivre là-bas. MinGW : un port Windows natif de GNU Compiler Collection (GCC), des bibliothèques d'importation et des fichiers d'en-tête librement distribuables pour la création d'applications Windows natives ; inclut des extensions du runtime MSVC pour prendre en charge la fonctionnalité C99. Tous les logiciels MinGW peuvent fonctionner sur les plates-formes Windows 64 bits.

mPDF
mPDF est une bibliothèque PHP qui peut générer des fichiers PDF à partir de HTML encodé en UTF-8. L'auteur original, Ian Back, a écrit mPDF pour générer des fichiers PDF « à la volée » depuis son site Web et gérer différentes langues. Il est plus lent et produit des fichiers plus volumineux lors de l'utilisation de polices Unicode que les scripts originaux comme HTML2FPDF, mais prend en charge les styles CSS, etc. et présente de nombreuses améliorations. Prend en charge presque toutes les langues, y compris RTL (arabe et hébreu) et CJK (chinois, japonais et coréen). Prend en charge les éléments imbriqués au niveau du bloc (tels que P, DIV),

Télécharger la version Mac de l'éditeur Atom
L'éditeur open source le plus populaire
