recherche
Maisondéveloppement back-endTutoriel PythonComment un segment de filtre maximum local peut-il mesurer la pression de la patte de chien dans des régions distinctes ?

How can a Local Maximum Filter Segment Dog Paw Pressure Measurements into Distinct Regions?

Algorithme de détection de pic pour les mesures de pression des pattes en réseau 2D

Afin de segmenter les mesures de pression des pattes de chien en régions anatomiques distinctes, un un filtre maximum peut être utilisé.

Mise en œuvre du filtre maximum local

<code class="python">import numpy as np
from scipy.ndimage.filters import maximum_filter
from scipy.ndimage.morphology import generate_binary_structure, binary_erosion
from scipy.ndimage.measurements import label

def detect_peaks(image):
    """
    Utilizes a local maximum filter to identify and return a mask of peak locations.
    """
    
    # Defines an 8-connected neighborhood
    neighborhood = generate_binary_structure(2,2)
    
    # Detects local maxima
    local_max = maximum_filter(image, footprint=neighborhood)==image
    
    # Creates a mask of the background
    background = (image==0)
    
    # Erodes the background to isolate peaks
    eroded_background = binary_erosion(background, structure=neighborhood, border_value=1)
    
    # Generates the final mask by removing background from the local_max mask
    detected_peaks = local_max ^ eroded_background
    
    return detected_peaks</code>

Utilisation et post-traitement

  1. Appliquez la fonction detect_peaks au tableau 2D de mesures de pression.
  2. Tracez le masque de pic obtenu à côté du tableau d'origine pour une vérification visuelle.
  3. Utilisez scipy.ndimage.measurements.label sur le masque de pic pour étiqueter chaque pic comme un objet distinct.

Remarque :

  • L'efficacité de cette approche repose sur un arrière-plan avec un minimum de bruit.
  • La taille du quartier doit être ajustée si les tailles de pic varient.

Considérations pour les améliorations de la mise en œuvre :

  • Taille du pic adaptation : Explorez les méthodes pour adapter la taille du quartier en fonction de la taille des pattes.
  • Détection des pics qui se chevauchent : Implémentez un algorithme qui permet la détection des pics qui se chevauchent.
  • Incorporation des informations sur la forme :Utiliser des descripteurs de forme pour mieux différencier les pics correspondant aux différents orteils.

Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!

Déclaration
Le contenu de cet article est volontairement contribué par les internautes et les droits d'auteur appartiennent à l'auteur original. Ce site n'assume aucune responsabilité légale correspondante. Si vous trouvez un contenu suspecté de plagiat ou de contrefaçon, veuillez contacter admin@php.cn
Comment le choix entre les listes et les tableaux a-t-il un impact sur les performances globales d'une application Python traitant de grands ensembles de données?Comment le choix entre les listes et les tableaux a-t-il un impact sur les performances globales d'une application Python traitant de grands ensembles de données?May 03, 2025 am 12:11 AM

ForhandlingLargedatasetSInpython, UsenumpyArraysforbetterperformance.1) NumpyArraysAremeMory-EfficientAndFasterFornumericalOperations.2) EvitUnneceSsaryTypeConversions.3) Le effet de levier

Expliquez comment la mémoire est allouée aux listes par rapport aux tableaux dans Python.Expliquez comment la mémoire est allouée aux listes par rapport aux tableaux dans Python.May 03, 2025 am 12:10 AM

Inpython, listSusedynamicMemoryallocation withover-allocation, whileLumpyArraySallocateFixedMemory.1) listsallocatemoreMoryThreededEdededInitialement, redimensipwenessary.2) NumpyArraySallocateExactMemoryForElements, offrantwectable usinessflexibilité.

Comment spécifiez-vous le type d'éléments de données dans un tableau Python?Comment spécifiez-vous le type d'éléments de données dans un tableau Python?May 03, 2025 am 12:06 AM

Inpython, YouCanscthedatatatypeyfelemememedenernSspant.1) usenpynernrump.1) usenpynerp.dloatp.ploatm64, formateur préséconstrolatatype.

Qu'est-ce que Numpy et pourquoi est-il important pour l'informatique numérique dans Python?Qu'est-ce que Numpy et pourquoi est-il important pour l'informatique numérique dans Python?May 03, 2025 am 12:03 AM

NumpyissentialFornumericalComputingInpythondutOtsSpeed, MemoryEfficiency et ComprehenSiveMathematicalFunctions.1) It'sfastBecauseitPerformSoperations INC.2) NumpyArraySareMoremory-EfficientThanpythonlists.3)

Discutez du concept de «l'allocation de la mémoire contigu» et de son importance pour les tableaux.Discutez du concept de «l'allocation de la mémoire contigu» et de son importance pour les tableaux.May 03, 2025 am 12:01 AM

ContigusMymoryallocationiscrucialforAraySBauseitallowsforefficient andfastelementAccess.1) iTenablesConstanttimeAccess, o (1), duetoDirectAddressCalculation.2) itimproveScacheefficiendyAllowingMultipleElementFetchesperCacheline.3) itsimplieniesMemorymorymorymorymorymory

Comment coupez-vous une liste de python?Comment coupez-vous une liste de python?May 02, 2025 am 12:14 AM

SlitingyPapyThonListIsDoneUsingTheSyntaxList [Démarrage: arrêt: étape] .He'showitworks: 1) startisheindexofthefirStelementoinclude.2) stopisTheIndexoftheFirstelementsoexclude.3) StepistheincrementBetweenselans.it'susefulfactingPortationSoListShsandCanusegeg

Quelles sont les opérations communes qui peuvent être effectuées sur des tableaux Numpy?Quelles sont les opérations communes qui peuvent être effectuées sur des tableaux Numpy?May 02, 2025 am 12:09 AM

NumpyAllowsForvariousOperations ONARRAYS: 1) BasicarithmeticLikeaddition, Soustraction, Multiplication, anddivision; 2) AdvancedOperationSuchasmatrixMultiplication; 3) Element-Wiseoperations withoutExplicitloop

Comment les tableaux sont-ils utilisés dans l'analyse des données avec Python?Comment les tableaux sont-ils utilisés dans l'analyse des données avec Python?May 02, 2025 am 12:09 AM

ArraySinpython, en particulier ThroughNumpyandPandas, aressentialfordataanalysis, offingspeeedAfficiency.1) numpyarrayablefficienthandlingoflargedatasetsandComplexOperationsLikEMoVingAverages.2)

See all articles

Outils d'IA chauds

Undresser.AI Undress

Undresser.AI Undress

Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover

AI Clothes Remover

Outil d'IA en ligne pour supprimer les vêtements des photos.

Undress AI Tool

Undress AI Tool

Images de déshabillage gratuites

Clothoff.io

Clothoff.io

Dissolvant de vêtements AI

Video Face Swap

Video Face Swap

Échangez les visages dans n'importe quelle vidéo sans effort grâce à notre outil d'échange de visage AI entièrement gratuit !

Outils chauds

SublimeText3 version anglaise

SublimeText3 version anglaise

Recommandé : version Win, prend en charge les invites de code !

Dreamweaver CS6

Dreamweaver CS6

Outils de développement Web visuel

SublimeText3 version Mac

SublimeText3 version Mac

Logiciel d'édition de code au niveau de Dieu (SublimeText3)

SublimeText3 Linux nouvelle version

SublimeText3 Linux nouvelle version

Dernière version de SublimeText3 Linux

ZendStudio 13.5.1 Mac

ZendStudio 13.5.1 Mac

Puissant environnement de développement intégré PHP