recherche
Maisondéveloppement back-endTutoriel PythonComprendre JSONify(), to_dict(), make_response() et SerializerMixin dans Flask

Understanding JSONify(), to_dict(), make_response(), and SerializerMixin in Flask

Flask fournit plusieurs outils pour la transformation des données en réponses, de la conversion d'objets Python en JSON à la création de réponses HTTP structurées. Dans cet article, nous explorerons jsonify(), to_dict(), make_response() et SerializerMixin, qui sont quatre fonctions et outils utiles pour travailler avec les réponses de données dans Flask. Comprendre ces outils aidera à créer de meilleures API et une gestion efficace des données.

jsonify()
Il s'agit d'une fonction Flask intégrée qui convertit les structures de données Python au format JSON, un format léger d'échange de données largement utilisé dans le développement Web pour les API. La fonction définit automatiquement la réponse Content-Type sur application/json et renvoie un objet de réponse Flask, ce qui la rend idéale pour renvoyer des données dans les API REST.

Exemple :

from flask import jsonify

@app.route('/data')
def get_data():
    data = {"message": "Hello, World!", "status": "success"}
    return jsonify(data)

Ici, jsonify(data) convertit les données du dictionnaire au format JSON et les définit comme corps de réponse. Cette fonction est utile lorsque vous devez renvoyer des données petites et bien définies, car elle gère pour vous la conversion JSON et le formatage des réponses. Il est important de noter que jsonify() fonctionne bien avec des types de données simples mais ne prend pas directement en charge les objets complexes, tels que les modèles SQLAlchemy, sans une certaine conversion (comme l'utilisation de to_dict()).

to_dict()
Il ne s'agit pas d'une fonction Flask native, mais elle est couramment utilisée dans les classes de modèles pour représenter SQLAlchemy ou d'autres instances de modèle Object Relational Mapping (ORM) sous forme de dictionnaires. Cette conversion des attributs du modèle en dictionnaire facilite la conversion des données au format JSON pour les réponses API.
Exemple :

class Student(db.Model):
    id = db.Column(db.Integer, primary_key=True)
    username = db.Column(db.String(80), nullable=False)

    def to_dict(self):
        return {
            "id": self.id,
            "username": self.username
        }

@app.route('/user/<id>')
def get_student(id):
    student = Student.query.get(id)
    return jsonify(student.to_dict()) if student else jsonify({"error": "Student not found"}), 404
</id>

La méthode to_dict() offre de la flexibilité en vous permettant de spécifier les données exactes à inclure dans la réponse. Il est utile pour masquer les données sensibles (comme les mots de passe) et afficher de manière sélective uniquement les attributs nécessaires.

make_response()
Il s'agit d'une fonction utilitaire Flask qui vous permet de créer des réponses HTTP personnalisées. Alors que jsonify() simplifie les réponses aux données JSON, make_response() vous permet de contrôler chaque partie de la réponse, y compris les codes d'état, les en-têtes et le format des données.

Exemple :

from flask import make_response, jsonify
from models import db

class Student(db.Model):
    id = db.Column(db.Integer, primary_key=True)
    username = db.Column(db.String(80), nullable=False)

    def to_dict(self):
        return {
            "id": self.id,
            "username": self.username
        }

@app.route('/student/<id>', methods=['GET'])
def get_student(id):
    # Query the database for the student
    student = Student.query.get(id)

    # If student is found, return data with a 200 status
    if student:
        response_data = {
            "message": "Student found",
            "data": student.to_dict()
        }
        return make_response(jsonify(response_data), 200)

    # If student is not found, return a structured error response with a 404 status
    error_data = {
        "error": "Student not found",
        "student_id": id,
        "status_code": 404
    }
    return make_response(jsonify(error_data), 404)

</id>

Ici, make_response() permet de contrôler le code d'état et le format du corps de la réponse. Cette flexibilité est idéale lorsque le contrôle de l'objet de réponse est de la plus haute importance.

SerializerMixin
Il provient de la bibliothèque sqlalchemy-serializer et constitue un outil puissant pour automatiser la sérialisation des modèles SQLAlchemy. Il fournit une méthode to_dict() qui peut gérer des types de données complexes incluant des relations entre les modèles et inclut un attribut serialize_rules pour contrôler les champs à sérialiser.

Utilisation :

from flask import jsonify

@app.route('/data')
def get_data():
    data = {"message": "Hello, World!", "status": "success"}
    return jsonify(data)

SerializerMixin automatise la conversion des modèles SQLAlchemy en dictionnaires, ce qui le rend utile lorsque vous travaillez avec des modèles et des relations complexes. Avec Serialize_rules, vous pouvez inclure ou exclure des champs ou des relations de manière dynamique, ce qui vous fait gagner du temps lors de l'écriture de méthodes to_dict personnalisées pour chaque modèle.

Comparaison et leurs relations
Chacun de ces outils a sa place dans la création d'une API Flask. jsonify() et make_response() sont des fonctions Flask essentielles pour créer des réponses JSON et personnalisées, tandis que to_dict() et SerializerMixin se concentrent sur la conversion des instances de modèle en dictionnaires pour une sérialisation JSON plus facile.

Voici un résumé des moments d'utilisation de chacun :

  • Utilisez jsonify() pour convertir facilement des structures de données Python simples au format JSON.
  • Utilisez to_dict() sur vos modèles pour créer des dictionnaires personnalisés avec des champs spécifiques pour la conversion JSON, en particulier lorsque vous travaillez avec des données sensibles ou complexes.
  • Utilisez make_response() pour définir un contrôle total sur la réponse HTTP, vous permettant de définir des codes d'état, des en-têtes ou des messages d'erreur personnalisés.
  • Utilisez SerializerMixin si vous travaillez avec des modèles SQLAlchemy et souhaitez convertir automatiquement les modèles (y compris les relations) en JSON avec une configuration minimale.

En conclusion, jsonify(), to_dict(), make_response() et SerializerMixin sont tous des outils essentiels pour transformer et gérer des données dans une API Flask. Leur utilisation efficace rendra votre API plus flexible, sécurisée et gérable.

Références

  • Documentation Flask : make_response()

  • SQLAlchemy SerializerMixin

Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!

Déclaration
Le contenu de cet article est volontairement contribué par les internautes et les droits d'auteur appartiennent à l'auteur original. Ce site n'assume aucune responsabilité légale correspondante. Si vous trouvez un contenu suspecté de plagiat ou de contrefaçon, veuillez contacter admin@php.cn
Python: une plongée profonde dans la compilation et l'interprétationPython: une plongée profonde dans la compilation et l'interprétationMay 12, 2025 am 12:14 AM

Pythonusahybridmodelofcompilation et interprétation: 1) thepythoninterpreterCompileSourCodeIntOplatform-indépendantBytecode.2) thepythonvirtualmachine (pvm) there examenesthisbytecode, équilibrage de l'usage de la performance.

Python est-il une langue interprétée ou compilée, et pourquoi est-ce important?Python est-il une langue interprétée ou compilée, et pourquoi est-ce important?May 12, 2025 am 12:09 AM

Pythonisbothinterpretedand compiled.1) il est composédToByteCodeForportabilityAcrosplatforms.2) theytecodeisthenter interprété, permettant à OrdayNamictypingAndRapidDevelopment, bien que MaybeSlowerSlowerSwower, aisance.

Pour Loop vs While Loop in Python: les principales différences expliquéesPour Loop vs While Loop in Python: les principales différences expliquéesMay 12, 2025 am 12:08 AM

Forloopsareideal quand vous savez que l'immatriculation des adressages a une avance, tandis que ce qui est de savoir si

Pour et bien que les boucles: un guide pratiquePour et bien que les boucles: un guide pratiqueMay 12, 2025 am 12:07 AM

Forloopsaseesesed whenthenUmberoFitations dissownininadvance, tandis que celle-ci a été utilisé sur les éléments de la dispense

Python: Est-ce vraiment interprété? Démystifier les mythesPython: Est-ce vraiment interprété? Démystifier les mythesMay 12, 2025 am 12:05 AM

Pythonisnotpurelyinterpreted; itusahybridapproachofbytecocecompilation andruntimeinterpretation.1) pythoncompilessourcecodeintoBytecode, whichStHenexEcutedythepythonVirtualMachine (pvm) .2)

Python concaténate liste avec le même élémentPython concaténate liste avec le même élémentMay 11, 2025 am 12:08 AM

ToconcaténateListSinpythonWithTheSameElements, Utilisation: 1) L'opératorTokeEpDuplicate, 2) ASETTOREMOVEUPLICATION, OR3) ListComprehensionfor pour la réduction de la réduction de la manière dont les directives.

Interprété vs Langues compilées: Place de PythonInterprété vs Langues compilées: Place de PythonMay 11, 2025 am 12:07 AM

PythonisaninterpretedLanguage, offrant une volonté et une flexibilité de la fin

Pour et pendant que les boucles: quand utilisez-vous chacun dans Python?Pour et pendant que les boucles: quand utilisez-vous chacun dans Python?May 11, 2025 am 12:05 AM

UseforloopswhenthenUmberoFitationsknowninadvance, andwhileloopswHeniterationsDepenSonacondition.1) forloopsareidealforseenceslikelistsorranges.2) whileLoopsSuitscenarioswheretheloopContiesUnUesUsUlaspecificconditMetmecemet, utilesforUSERIRSURSoralgorititititititititititititititititittorititititititittorititititititititittorititititititititittoritititititititititititititititititittitititititititititititititititititittitititititititititititititititititittitititititititititititititititititittititititititititititititititititittititet

See all articles

Outils d'IA chauds

Undresser.AI Undress

Undresser.AI Undress

Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover

AI Clothes Remover

Outil d'IA en ligne pour supprimer les vêtements des photos.

Undress AI Tool

Undress AI Tool

Images de déshabillage gratuites

Clothoff.io

Clothoff.io

Dissolvant de vêtements AI

Video Face Swap

Video Face Swap

Échangez les visages dans n'importe quelle vidéo sans effort grâce à notre outil d'échange de visage AI entièrement gratuit !

Article chaud

<🎜>: Bubble Gum Simulator Infinity - Comment obtenir et utiliser les clés royales
3 Il y a quelques semainesBy尊渡假赌尊渡假赌尊渡假赌
Nordhold: Système de fusion, expliqué
3 Il y a quelques semainesBy尊渡假赌尊渡假赌尊渡假赌
Mandragora: Whispers of the Witch Tree - Comment déverrouiller le grappin
3 Il y a quelques semainesBy尊渡假赌尊渡假赌尊渡假赌

Outils chauds

Envoyer Studio 13.0.1

Envoyer Studio 13.0.1

Puissant environnement de développement intégré PHP

MinGW - GNU minimaliste pour Windows

MinGW - GNU minimaliste pour Windows

Ce projet est en cours de migration vers osdn.net/projects/mingw, vous pouvez continuer à nous suivre là-bas. MinGW : un port Windows natif de GNU Compiler Collection (GCC), des bibliothèques d'importation et des fichiers d'en-tête librement distribuables pour la création d'applications Windows natives ; inclut des extensions du runtime MSVC pour prendre en charge la fonctionnalité C99. Tous les logiciels MinGW peuvent fonctionner sur les plates-formes Windows 64 bits.

Bloc-notes++7.3.1

Bloc-notes++7.3.1

Éditeur de code facile à utiliser et gratuit

mPDF

mPDF

mPDF est une bibliothèque PHP qui peut générer des fichiers PDF à partir de HTML encodé en UTF-8. L'auteur original, Ian Back, a écrit mPDF pour générer des fichiers PDF « à la volée » depuis son site Web et gérer différentes langues. Il est plus lent et produit des fichiers plus volumineux lors de l'utilisation de polices Unicode que les scripts originaux comme HTML2FPDF, mais prend en charge les styles CSS, etc. et présente de nombreuses améliorations. Prend en charge presque toutes les langues, y compris RTL (arabe et hébreu) ​​et CJK (chinois, japonais et coréen). Prend en charge les éléments imbriqués au niveau du bloc (tels que P, DIV),

Télécharger la version Mac de l'éditeur Atom

Télécharger la version Mac de l'éditeur Atom

L'éditeur open source le plus populaire