Maison  >  Article  >  développement back-end  >  isclose dans PyTorch

isclose dans PyTorch

DDD
DDDoriginal
2024-11-04 10:31:53174parcourir

isclose in PyTorch

Achetez-moi un café☕

*Mémos :

  • Mon article explique égal(), eq() et ne().
  • Mon message explique gt() et lt().
  • Mon message explique ge() et le().

isclose() peut vérifier si zéro ou plusieurs éléments du 1er tenseur 0D ou plus D sont égaux ou presque égaux à zéro ou plusieurs éléments du 2e tenseur 0D ou plus D par élément, obtenant le 0D ou plus Tenseur D de zéro ou plusieurs éléments comme indiqué ci-dessous :

*Mémos :

  • isclose() peut être utilisé avec une torche ou un tenseur.
  • Le 1er argument (entrée) avec torch ou en utilisant un tenseur (Required-Type : tenseur de int, float, complexe ou bool).
  • Le 2ème argument avec torch ou le 1er argument avec un tenseur est autre (Required-Type : tensor of int, float, complexe ou bool).
  • Le 3ème argument avec torch ou le 2ème argument avec un tenseur est rtol(Optional-Default:1e-05-Type:float).
  • Le 4ème argument avec torch ou le 3ème argument avec un tenseur est atol(Optional-Default:1e-08-Type:float).
  • Le 5ème argument avec torch ou le 4ème argument avec un tenseur est égal_nan(Optional-Default:False-Type:bool) : *Mémos :
    • Si c'est vrai, nan et nan renvoient vrai.
    • En gros, nan et nan renvoient False.
  • La formule est |entrée - autre| <= rtol x |autre| atol.
import torch

tensor1 = torch.tensor([1.00001001, 1.00000996, 1.00000995, torch.nan])
tensor2 = torch.tensor([1., 1., 1., torch.nan])

torch.isclose(input=tensor1, other=tensor2)
torch.isclose(input=tensor1, other=tensor2,
              rtol=1e-05, atol=1e-08, equal_nan=False)
            # 0.00001   # 0.00000001
tensor1.isclose(other=tensor2)
torch.isclose(input=tensor2, other=tensor1)
# tensor([False, False, True, False])

torch.isclose(input=tensor1, other=tensor2, equal_nan=True)
# tensor([False, False, True, True])

tensor1 = torch.tensor([[1.00001001, 1.00000996],
                        [1.00000995, torch.nan]])
tensor2 = torch.tensor([[1., 1.],
                        [1., torch.nan]])
torch.isclose(input=tensor1, other=tensor2)
torch.isclose(input=tensor2, other=tensor1)
# tensor([[False, False],
#         [True, False]])

tensor1 = torch.tensor([[[1.00001001],
                         [1.00000996]],
                        [[1.00000995],
                         [torch.nan]]])
tensor2 = torch.tensor([[[1.], [1.]],
                        [[1.], [torch.nan]]])
torch.isclose(input=tensor1, other=tensor2)
torch.isclose(input=tensor2, other=tensor1)
# tensor([[[False], [False]],
#         [[True], [False]]])

tensor1 = torch.tensor([[1.00001001, 1.00000996],
                        [1.00000995, torch.nan]])
tensor2 = torch.tensor([1., 1.])

torch.isclose(input=tensor1, other=tensor2)
torch.isclose(input=tensor2, other=tensor1)
# tensor([[False, False],
#         [True, False]])

tensor1 = torch.tensor([[1.00001001, 1.00000996],
                        [1.00000995, torch.nan]])
tensor2 = torch.tensor(1.)

torch.isclose(input=tensor1, other=tensor2)
torch.isclose(input=tensor2, other=tensor1)
# tensor([[False, False],
#         [True, False]])

tensor1 = torch.tensor([0, 1, 2])
tensor2 = torch.tensor(1)

torch.isclose(input=tensor1, other=tensor2)
# tensor([False, True, False])

tensor1 = torch.tensor([0.+0.j, 1.+0.j, 2.+0.j])
tensor2 = torch.tensor(1.+0.j)

torch.isclose(input=tensor1, other=tensor2)
# tensor([False, True, False])

tensor1 = torch.tensor([False, True, False])
tensor2 = torch.tensor(True)

torch.isclose(input=tensor1, other=tensor2)
# tensor([False, True, False])

Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!

Déclaration:
Le contenu de cet article est volontairement contribué par les internautes et les droits d'auteur appartiennent à l'auteur original. Ce site n'assume aucune responsabilité légale correspondante. Si vous trouvez un contenu suspecté de plagiat ou de contrefaçon, veuillez contacter admin@php.cn