


Comment Python compare-t-il les listes avec des opérateurs supérieur à et inférieur à ?
Comparaison de listes avec l'opérateur Supérieur ou Inférieur à : des surprises dans l'ordre lexicographique
Lorsque vous rencontrez du code, comparez directement des listes en utilisant l'opérateur supérieur ou inférieur than (> et
Pour percer ce mystère, nous nous tournons vers la documentation de Python sur la comparaison des séquences et d'autres types. Il indique que de telles comparaisons suivent un ordre lexicographique et non des comparaisons élément par élément :
- Les deux premiers éléments des listes sont comparés. S'ils diffèrent, cela détermine le résultat.
- Si les premiers éléments sont égaux, les deux éléments suivants sont comparés.
- Ce processus se poursuit jusqu'à ce qu'une liste soit à court de éléments.
Considérons l'exemple suivant :
a = [3, 3, 3, 3] b = [4, 4, 4, 4]
Étant donné que les premiers éléments (3 et 4) diffèrent, b est considéré comme supérieur à a. Cela correspond à notre hypothèse selon laquelle tous les éléments de b sont plus grands que ceux de a.
Cependant, le cas suivant illustre plus clairement la règle d'ordre lexicographique :
a = [1, 1, 3, 1] b = [1, 3, 1, 1]
Depuis les premiers éléments ( 1) sont égaux, la comparaison passe aux éléments suivants. Dans ce cas, le deuxième élément de a (1) est inférieur au deuxième élément de b (3). Par conséquent, malgré le fait que a a plus d'éléments supérieurs à 1 que b, b est considéré comme supérieur à a.
En résumé, lors de la comparaison de listes utilisant l'opérateur supérieur ou inférieur à, Python utilise un ordre lexicographique, plutôt que des comparaisons élément par élément. Cela peut conduire à des résultats inattendus, surtout lorsque les listes contiennent des éléments de valeurs différentes.
Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!

Est-ce suffisant pour apprendre Python pendant deux heures par jour? Cela dépend de vos objectifs et de vos méthodes d'apprentissage. 1) Élaborer un plan d'apprentissage clair, 2) Sélectionnez les ressources et méthodes d'apprentissage appropriées, 3) la pratique et l'examen et la consolidation de la pratique pratique et de l'examen et de la consolidation, et vous pouvez progressivement maîtriser les connaissances de base et les fonctions avancées de Python au cours de cette période.

Les applications clés de Python dans le développement Web incluent l'utilisation des cadres Django et Flask, le développement de l'API, l'analyse et la visualisation des données, l'apprentissage automatique et l'IA et l'optimisation des performances. 1. Framework Django et Flask: Django convient au développement rapide d'applications complexes, et Flask convient aux projets petits ou hautement personnalisés. 2. Développement de l'API: Utilisez Flask ou DjangorestFramework pour construire RestulAPI. 3. Analyse et visualisation des données: utilisez Python pour traiter les données et les afficher via l'interface Web. 4. Apprentissage automatique et AI: Python est utilisé pour créer des applications Web intelligentes. 5. Optimisation des performances: optimisée par la programmation, la mise en cache et le code asynchrones

Python est meilleur que C dans l'efficacité du développement, mais C est plus élevé dans les performances d'exécution. 1. La syntaxe concise de Python et les bibliothèques riches améliorent l'efficacité du développement. Les caractéristiques de type compilation et le contrôle du matériel de CC améliorent les performances d'exécution. Lorsque vous faites un choix, vous devez peser la vitesse de développement et l'efficacité de l'exécution en fonction des besoins du projet.

Les applications du monde réel de Python incluent l'analyse des données, le développement Web, l'intelligence artificielle et l'automatisation. 1) Dans l'analyse des données, Python utilise des pandas et du matplotlib pour traiter et visualiser les données. 2) Dans le développement Web, les cadres Django et Flask simplifient la création d'applications Web. 3) Dans le domaine de l'intelligence artificielle, Tensorflow et Pytorch sont utilisés pour construire et former des modèles. 4) En termes d'automatisation, les scripts Python peuvent être utilisés pour des tâches telles que la copie de fichiers.

Python est largement utilisé dans les domaines de la science des données, du développement Web et des scripts d'automatisation. 1) Dans la science des données, Python simplifie le traitement et l'analyse des données à travers des bibliothèques telles que Numpy et Pandas. 2) Dans le développement Web, les cadres Django et Flask permettent aux développeurs de créer rapidement des applications. 3) Dans les scripts automatisés, la simplicité de Python et la bibliothèque standard le rendent idéal.

La flexibilité de Python se reflète dans les systèmes de prise en charge et de type dynamique multi-paradigmes, tandis que la facilité d'utilisation provient d'une syntaxe simple et d'une bibliothèque standard riche. 1. Flexibilité: prend en charge la programmation orientée objet, fonctionnelle et procédurale, et les systèmes de type dynamique améliorent l'efficacité de développement. 2. Facilité d'utilisation: La grammaire est proche du langage naturel, la bibliothèque standard couvre un large éventail de fonctions et simplifie le processus de développement.

Python est très favorisé pour sa simplicité et son pouvoir, adaptés à tous les besoins des débutants aux développeurs avancés. Sa polyvalence se reflète dans: 1) Facile à apprendre et à utiliser, syntaxe simple; 2) Bibliothèques et cadres riches, tels que Numpy, Pandas, etc.; 3) Support multiplateforme, qui peut être exécuté sur une variété de systèmes d'exploitation; 4) Convient aux tâches de script et d'automatisation pour améliorer l'efficacité du travail.

Oui, apprenez Python en deux heures par jour. 1. Élaborer un plan d'étude raisonnable, 2. Sélectionnez les bonnes ressources d'apprentissage, 3. Consolider les connaissances apprises par la pratique. Ces étapes peuvent vous aider à maîtriser Python en peu de temps.


Outils d'IA chauds

Undresser.AI Undress
Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover
Outil d'IA en ligne pour supprimer les vêtements des photos.

Undress AI Tool
Images de déshabillage gratuites

Clothoff.io
Dissolvant de vêtements AI

AI Hentai Generator
Générez AI Hentai gratuitement.

Article chaud

Outils chauds

Version Mac de WebStorm
Outils de développement JavaScript utiles

Télécharger la version Mac de l'éditeur Atom
L'éditeur open source le plus populaire

DVWA
Damn Vulnerable Web App (DVWA) est une application Web PHP/MySQL très vulnérable. Ses principaux objectifs sont d'aider les professionnels de la sécurité à tester leurs compétences et leurs outils dans un environnement juridique, d'aider les développeurs Web à mieux comprendre le processus de sécurisation des applications Web et d'aider les enseignants/étudiants à enseigner/apprendre dans un environnement de classe. Application Web sécurité. L'objectif de DVWA est de mettre en pratique certaines des vulnérabilités Web les plus courantes via une interface simple et directe, avec différents degrés de difficulté. Veuillez noter que ce logiciel

SublimeText3 version anglaise
Recommandé : version Win, prend en charge les invites de code !

SublimeText3 version Mac
Logiciel d'édition de code au niveau de Dieu (SublimeText3)