recherche
Maisoninterface Webjs tutorielAlgorithmes derrière les méthodes de tableau JavaScript

Algorithms Behind JavaScript Array Methods

Algorithmes derrière les méthodes de tableau JavaScript.

Les tableaux JavaScript sont livrés avec diverses méthodes intégrées qui permettent la manipulation et la récupération des données dans un tableau. Voici une liste de méthodes de tableau extraites de votre plan :

  1. concat()
  2. rejoindre()
  3. remplissage()
  4. inclut()
  5. indexOf()
  6. inverse()
  7. trier()
  8. épissure()
  9. à()
  10. copyWithin()
  11. plat()
  12. Array.from()
  13. findLastIndex()
  14. pourEach()
  15. chaque()
  16. entrées()
  17. valeurs()
  18. toReversed() (crée une copie inversée du tableau sans modifier l'original)
  19. toSorted() (crée une copie triée du tableau sans modifier l'original)
  20. toSpliced() (crée un nouveau tableau avec des éléments ajoutés ou supprimés sans modifier l'original)
  21. with() (renvoie une copie du tableau avec un élément spécifique remplacé)
  22. Array.fromAsync()
  23. Array.of()
  24. carte()
  25. flatMap()
  26. réduire()
  27. réduireRight()
  28. certains()
  29. trouver()
  30. findIndex()
  31. findLast()

Permettez-moi de détailler les algorithmes courants utilisés pour chaque méthode de tableau JavaScript :

1. concaténer()

  • Algorithme : ajout/fusion linéaire
  • Complexité temporelle : O(n) où n est la longueur totale de tous les tableaux
  • Utilise en interne l'itération pour créer un nouveau tableau et copier des éléments
// concat()
Array.prototype.myConcat = function(...arrays) {
  const result = [...this];
  for (const arr of arrays) {
    for (const item of arr) {
      result.push(item);
    }
  }
  return result;
};

2. rejoindre()

  • Algorithme : Parcours linéaire avec concaténation de chaînes
  • Complexité temporelle : O(n)
  • Parcourt les éléments du tableau et crée la chaîne de résultat
// join()
Array.prototype.myJoin = function(separator = ',') {
  let result = '';
  for (let i = 0; i 



<h3>
  
  
  3. remplir()
</h3>

  • Algorithme : Parcours linéaire avec affectation
  • Complexité temporelle : O(n)
  • Itération simple avec attribution de valeur
// fill()
Array.prototype.myFill = function(value, start = 0, end = this.length) {
  for (let i = start; i 



<h3>
  
  
  4. inclut()
</h3>

  • Algorithme : Recherche linéaire
  • Complexité temporelle : O(n)
  • Analyse séquentielle jusqu'à ce que l'élément soit trouvé ou la fin atteinte
// includes()
Array.prototype.myIncludes = function(searchElement, fromIndex = 0) {
  const startIndex = fromIndex >= 0 ? fromIndex : Math.max(0, this.length + fromIndex);
  for (let i = startIndex; i 



<h3>
  
  
  5. indexDe()
</h3>

  • Algorithme : Recherche linéaire
  • Complexité temporelle : O(n)
  • Analyse séquentielle du début jusqu'à ce que la correspondance soit trouvée
// indexOf()
Array.prototype.myIndexOf = function(searchElement, fromIndex = 0) {
  const startIndex = fromIndex >= 0 ? fromIndex : Math.max(0, this.length + fromIndex);
  for (let i = startIndex; i 



<h3>
  
  
  6. inverse()
</h3>

  • Algorithme : échange à deux points
  • Complexité temporelle : O(n/2)
  • Échange les éléments du début/de la fin vers l'intérieur
// reverse()
Array.prototype.myReverse = function() {
  let left = 0;
  let right = this.length - 1;

  while (left 



<h3>
  
  
  7. trier()
</h3>

  • Algorithme : généralement TimSort (hybride de tri par fusion et de tri par insertion)
  • Complexité temporelle : O(n log n)
  • Les navigateurs modernes utilisent des algorithmes de tri adaptatifs
// sort()
Array.prototype.mySort = function(compareFn) {
  // Implementation of QuickSort for simplicity
  // Note: Actual JS engines typically use TimSort
  const quickSort = (arr, low, high) => {
    if (low  {
    const pivot = arr[high];
    let i = low - 1;

    for (let j = low; j 



<h3>
  
  
  8. épissure()
</h3>

  • Algorithme : Modification du réseau linéaire
  • Complexité temporelle : O(n)
  • Déplace les éléments et modifie le tableau sur place
// splice()
Array.prototype.mySplice = function(start, deleteCount, ...items) {
  const len = this.length;
  const actualStart = start  0) {
    // Moving elements right
    for (let i = len - 1; i >= actualStart + actualDeleteCount; i--) {
      this[i + shiftCount] = this[i];
    }
  } else if (shiftCount 



<h3>
  
  
  9. à()
</h3>

  • Algorithme : Accès direct à l'index
  • Complexité temporelle : O(1)
  • Indexation simple des tableaux avec vérification des limites
// at()
Array.prototype.myAt = function(index) {
  const actualIndex = index >= 0 ? index : this.length + index;
  return this[actualIndex];
};

10. copyWithin()

  • Algorithme : Bloquer la copie de la mémoire
  • Complexité temporelle : O(n)
  • Opérations de copie et de décalage de la mémoire interne
// copyWithin()
Array.prototype.myCopyWithin = function(target, start = 0, end = this.length) {
  const len = this.length;
  let to = target 



<h3>
  
  
  11. plat()
</h3>

  • Algorithme : parcours récursif en profondeur d'abord
  • Complexité temporelle : O(n) pour un seul niveau, O(d*n) pour la profondeur d
  • Aplatit récursivement les tableaux imbriqués
// flat()
Array.prototype.myFlat = function(depth = 1) {
  const flatten = (arr, currentDepth) => {
    const result = [];
    for (const item of arr) {
      if (Array.isArray(item) && currentDepth 



<h3>
  
  
  12. Tableau.from()
</h3>

  • Algorithme : Itération et copie
  • Complexité temporelle : O(n)
  • Crée un nouveau tableau à partir d'un itérable
// Array.from()
Array.myFrom = function(arrayLike, mapFn) {
  const result = [];
  for (let i = 0; i 



<h3>
  
  
  13. findLastIndex()
</h3>

  • Algorithme : Recherche linéaire inversée
  • Complexité temporelle : O(n)
  • Analyse séquentielle de la fin jusqu'à ce que la correspondance soit trouvée
// findLastIndex()
Array.prototype.myFindLastIndex = function(predicate) {
  for (let i = this.length - 1; i >= 0; i--) {
    if (predicate(this[i], i, this)) return i;
  }
  return -1;
};

14. pourChaque()

  • Algorithme : Itération linéaire
  • Complexité temporelle : O(n)
  • Itération simple avec exécution de rappel
// forEach()
Array.prototype.myForEach = function(callback) {
  for (let i = 0; i 



<h3>
  
  
  15. chaque()
</h3>

<p>Algorithme : Balayage linéaire en court-circuit<br>
Complexité temporelle : O(n)<br>
S'arrête à la première fausse condition<br>
</p><pre class="brush:php;toolbar:false">// concat()
Array.prototype.myConcat = function(...arrays) {
  const result = [...this];
  for (const arr of arrays) {
    for (const item of arr) {
      result.push(item);
    }
  }
  return result;
};

16. entrées()

  • Algorithme : Implémentation du protocole itérateur
  • Complexité temporelle : O(1) pour la création, O(n) pour l'itération complète
  • Crée un objet itérateur
// join()
Array.prototype.myJoin = function(separator = ',') {
  let result = '';
  for (let i = 0; i 



<h3>
  
  
  17. valeurs()
</h3>

  • Algorithme : Implémentation du protocole itérateur
  • Complexité temporelle : O(1) pour la création, O(n) pour l'itération complète
  • Crée un itérateur pour les valeurs
// fill()
Array.prototype.myFill = function(value, start = 0, end = this.length) {
  for (let i = start; i 



<h3>
  
  
  18. toReversed()
</h3>

  • Algorithme : Copie avec itération inverse
  • Complexité temporelle : O(n)
  • Crée un nouveau tableau inversé
// includes()
Array.prototype.myIncludes = function(searchElement, fromIndex = 0) {
  const startIndex = fromIndex >= 0 ? fromIndex : Math.max(0, this.length + fromIndex);
  for (let i = startIndex; i 



<h3>
  
  
  19. àTrié()
</h3>

  • Algorithme : Copier puis TimSort
  • Complexité temporelle : O(n log n)
  • Crée une copie triée à l'aide du tri standard
// indexOf()
Array.prototype.myIndexOf = function(searchElement, fromIndex = 0) {
  const startIndex = fromIndex >= 0 ? fromIndex : Math.max(0, this.length + fromIndex);
  for (let i = startIndex; i 



<h3>
  
  
  20. àSpliced()
</h3>

  • Algorithme : Copie avec modification
  • Complexité temporelle : O(n)
  • Crée une copie modifiée
// reverse()
Array.prototype.myReverse = function() {
  let left = 0;
  let right = this.length - 1;

  while (left 



<h3>
  
  
  21. avec()
</h3>

  • Algorithme : copie superficielle avec une seule modification
  • Complexité temporelle : O(n)
  • Crée une copie avec un élément modifié
// sort()
Array.prototype.mySort = function(compareFn) {
  // Implementation of QuickSort for simplicity
  // Note: Actual JS engines typically use TimSort
  const quickSort = (arr, low, high) => {
    if (low  {
    const pivot = arr[high];
    let i = low - 1;

    for (let j = low; j 



<h3>
  
  
  22. Tableau.fromAsync()
</h3>

  • Algorithme : Itération et collecte asynchrones
  • Complexité temporelle : opérations asynchrones O(n)
  • Gère les promesses et les itérables asynchrones
// splice()
Array.prototype.mySplice = function(start, deleteCount, ...items) {
  const len = this.length;
  const actualStart = start  0) {
    // Moving elements right
    for (let i = len - 1; i >= actualStart + actualDeleteCount; i--) {
      this[i + shiftCount] = this[i];
    }
  } else if (shiftCount 



<h3>
  
  
  23. Tableau.de()
</h3>

  • Algorithme : Création directe de tableaux
  • Complexité temporelle : O(n)
  • Crée un tableau à partir d'arguments
// at()
Array.prototype.myAt = function(index) {
  const actualIndex = index >= 0 ? index : this.length + index;
  return this[actualIndex];
};

24. carte()

  • Algorithme : Itération de transformation
  • Complexité temporelle : O(n)
  • Crée un nouveau tableau avec des éléments transformés
// copyWithin()
Array.prototype.myCopyWithin = function(target, start = 0, end = this.length) {
  const len = this.length;
  let to = target 



<h3>
  
  
  25. flatMap()
</h3>

  • Algorithme : Carte aplatie
  • Complexité temporelle : O(n*m) où m est la taille moyenne du tableau mappé
  • Combine le mappage et l'aplatissement
// flat()
Array.prototype.myFlat = function(depth = 1) {
  const flatten = (arr, currentDepth) => {
    const result = [];
    for (const item of arr) {
      if (Array.isArray(item) && currentDepth 



<h3>
  
  
  26. réduire()
</h3>

  • Algorithme : Accumulation linéaire
  • Complexité temporelle : O(n)
  • Accumulation séquentielle avec rappel
// Array.from()
Array.myFrom = function(arrayLike, mapFn) {
  const result = [];
  for (let i = 0; i 



<h3>
  
  
  27. réduireDroite()
</h3>

  • Algorithme : Accumulation linéaire inversée
  • Complexité temporelle : O(n)
  • Accumulation de droite à gauche
// findLastIndex()
Array.prototype.myFindLastIndex = function(predicate) {
  for (let i = this.length - 1; i >= 0; i--) {
    if (predicate(this[i], i, this)) return i;
  }
  return -1;
};

28. certains()

  • Algorithme : Balayage linéaire en court-circuit
  • Complexité temporelle : O(n)
  • S'arrête à la première condition vraie
// forEach()
Array.prototype.myForEach = function(callback) {
  for (let i = 0; i 



<h3>
  
  
  29. trouver()
</h3>

  • Algorithme : Recherche linéaire
  • Complexité temporelle : O(n)
  • Analyse séquentielle jusqu'à ce que la condition soit remplie
// every()
Array.prototype.myEvery = function(predicate) {
  for (let i = 0; i 



<h3>
  
  
  30. findIndex()
</h3>

  • Algorithme : Recherche linéaire
  • Complexité temporelle : O(n)
  • Analyse séquentielle pour la condition correspondante
// entries()
Array.prototype.myEntries = function() {
  let index = 0;
  const array = this;

  return {
    [Symbol.iterator]() {
      return this;
    },
    next() {
      if (index 



<h3>
  
  
  31. trouverDernier()
</h3>

  • Algorithme : Recherche linéaire inversée
  • Complexité temporelle : O(n)
  • Analyse séquentielle depuis la fin
// concat()
Array.prototype.myConcat = function(...arrays) {
  const result = [...this];
  for (const arr of arrays) {
    for (const item of arr) {
      result.push(item);
    }
  }
  return result;
};

J'ai fourni des implémentations complètes des 31 méthodes de tableau que vous avez demandées.

? Connectez-vous avec moi sur LinkedIn :

Plongeons ensemble plus profondément dans le monde du génie logiciel ! Je partage régulièrement des informations sur JavaScript, TypeScript, Node.js, React, Next.js, les structures de données, les algorithmes, le développement Web et bien plus encore. Que vous cherchiez à améliorer vos compétences ou à collaborer sur des sujets passionnants, j'aimerais entrer en contact et grandir avec vous.

Suivez-moi : Nozibul Islam

Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!

Déclaration
Le contenu de cet article est volontairement contribué par les internautes et les droits d'auteur appartiennent à l'auteur original. Ce site n'assume aucune responsabilité légale correspondante. Si vous trouvez un contenu suspecté de plagiat ou de contrefaçon, veuillez contacter admin@php.cn
Moteurs JavaScript: comparaison des implémentationsMoteurs JavaScript: comparaison des implémentationsApr 13, 2025 am 12:05 AM

Différents moteurs JavaScript ont des effets différents lors de l'analyse et de l'exécution du code JavaScript, car les principes d'implémentation et les stratégies d'optimisation de chaque moteur diffèrent. 1. Analyse lexicale: convertir le code source en unité lexicale. 2. Analyse de la grammaire: générer un arbre de syntaxe abstrait. 3. Optimisation et compilation: générer du code machine via le compilateur JIT. 4. Exécuter: Exécutez le code machine. Le moteur V8 optimise grâce à une compilation instantanée et à une classe cachée, SpiderMonkey utilise un système d'inférence de type, résultant en différentes performances de performances sur le même code.

Au-delà du navigateur: Javascript dans le monde réelAu-delà du navigateur: Javascript dans le monde réelApr 12, 2025 am 12:06 AM

Les applications de JavaScript dans le monde réel incluent la programmation côté serveur, le développement des applications mobiles et le contrôle de l'Internet des objets: 1. La programmation côté serveur est réalisée via Node.js, adaptée au traitement de demande élevé simultané. 2. Le développement d'applications mobiles est effectué par le reactnatif et prend en charge le déploiement multiplateforme. 3. Utilisé pour le contrôle des périphériques IoT via la bibliothèque Johnny-Five, adapté à l'interaction matérielle.

Construire une application SaaS multi-locataire avec next.js (intégration backend)Construire une application SaaS multi-locataire avec next.js (intégration backend)Apr 11, 2025 am 08:23 AM

J'ai construit une application SAAS multi-locataire fonctionnelle (une application EdTech) avec votre outil technologique quotidien et vous pouvez faire de même. Premièrement, qu'est-ce qu'une application SaaS multi-locataire? Les applications saas multi-locataires vous permettent de servir plusieurs clients à partir d'un chant

Comment construire une application SaaS multi-locataire avec Next.js (Frontend Integration)Comment construire une application SaaS multi-locataire avec Next.js (Frontend Integration)Apr 11, 2025 am 08:22 AM

Cet article démontre l'intégration frontale avec un backend sécurisé par permis, construisant une application fonctionnelle EdTech SaaS en utilisant Next.js. Le frontend récupère les autorisations des utilisateurs pour contrôler la visibilité de l'interface utilisateur et garantit que les demandes d'API adhèrent à la base de rôles

JavaScript: Explorer la polyvalence d'un langage WebJavaScript: Explorer la polyvalence d'un langage WebApr 11, 2025 am 12:01 AM

JavaScript est le langage central du développement Web moderne et est largement utilisé pour sa diversité et sa flexibilité. 1) Développement frontal: construire des pages Web dynamiques et des applications à une seule page via les opérations DOM et les cadres modernes (tels que React, Vue.js, Angular). 2) Développement côté serveur: Node.js utilise un modèle d'E / S non bloquant pour gérer une concurrence élevée et des applications en temps réel. 3) Développement des applications mobiles et de bureau: le développement de la plate-forme multiplateuse est réalisé par réact noral et électron pour améliorer l'efficacité du développement.

L'évolution de JavaScript: tendances actuelles et perspectives d'avenirL'évolution de JavaScript: tendances actuelles et perspectives d'avenirApr 10, 2025 am 09:33 AM

Les dernières tendances de JavaScript incluent la montée en puissance de TypeScript, la popularité des frameworks et bibliothèques modernes et l'application de WebAssembly. Les prospects futurs couvrent des systèmes de type plus puissants, le développement du JavaScript côté serveur, l'expansion de l'intelligence artificielle et de l'apprentissage automatique, et le potentiel de l'informatique IoT et Edge.

Démystifier javascript: ce qu'il fait et pourquoi c'est importantDémystifier javascript: ce qu'il fait et pourquoi c'est importantApr 09, 2025 am 12:07 AM

JavaScript est la pierre angulaire du développement Web moderne, et ses principales fonctions incluent la programmation axée sur les événements, la génération de contenu dynamique et la programmation asynchrone. 1) La programmation axée sur les événements permet aux pages Web de changer dynamiquement en fonction des opérations utilisateur. 2) La génération de contenu dynamique permet d'ajuster le contenu de la page en fonction des conditions. 3) La programmation asynchrone garantit que l'interface utilisateur n'est pas bloquée. JavaScript est largement utilisé dans l'interaction Web, les applications à une page et le développement côté serveur, améliorant considérablement la flexibilité de l'expérience utilisateur et du développement multiplateforme.

Python ou JavaScript est-il meilleur?Python ou JavaScript est-il meilleur?Apr 06, 2025 am 12:14 AM

Python est plus adapté à la science des données et à l'apprentissage automatique, tandis que JavaScript est plus adapté au développement frontal et complet. 1. Python est connu pour sa syntaxe concise et son écosystème de bibliothèque riche, et convient à l'analyse des données et au développement Web. 2. JavaScript est le cœur du développement frontal. Node.js prend en charge la programmation côté serveur et convient au développement complet.

See all articles

Outils d'IA chauds

Undresser.AI Undress

Undresser.AI Undress

Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover

AI Clothes Remover

Outil d'IA en ligne pour supprimer les vêtements des photos.

Undress AI Tool

Undress AI Tool

Images de déshabillage gratuites

Clothoff.io

Clothoff.io

Dissolvant de vêtements AI

AI Hentai Generator

AI Hentai Generator

Générez AI Hentai gratuitement.

Article chaud

R.E.P.O. Crystals d'énergie expliqués et ce qu'ils font (cristal jaune)
3 Il y a quelques semainesBy尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Meilleurs paramètres graphiques
3 Il y a quelques semainesBy尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Comment réparer l'audio si vous n'entendez personne
3 Il y a quelques semainesBy尊渡假赌尊渡假赌尊渡假赌
WWE 2K25: Comment déverrouiller tout dans Myrise
4 Il y a quelques semainesBy尊渡假赌尊渡假赌尊渡假赌

Outils chauds

VSCode Windows 64 bits Télécharger

VSCode Windows 64 bits Télécharger

Un éditeur IDE gratuit et puissant lancé par Microsoft

SublimeText3 Linux nouvelle version

SublimeText3 Linux nouvelle version

Dernière version de SublimeText3 Linux

ZendStudio 13.5.1 Mac

ZendStudio 13.5.1 Mac

Puissant environnement de développement intégré PHP

SublimeText3 version anglaise

SublimeText3 version anglaise

Recommandé : version Win, prend en charge les invites de code !

Télécharger la version Mac de l'éditeur Atom

Télécharger la version Mac de l'éditeur Atom

L'éditeur open source le plus populaire