Maison >interface Web >js tutoriel >Algorithmes derrière les méthodes de tableau JavaScript
Les tableaux JavaScript sont livrés avec diverses méthodes intégrées qui permettent la manipulation et la récupération des données dans un tableau. Voici une liste de méthodes de tableau extraites de votre plan :
Permettez-moi de détailler les algorithmes courants utilisés pour chaque méthode de tableau JavaScript :
// concat() Array.prototype.myConcat = function(...arrays) { const result = [...this]; for (const arr of arrays) { for (const item of arr) { result.push(item); } } return result; };
// join() Array.prototype.myJoin = function(separator = ',') { let result = ''; for (let i = 0; i < this.length; i++) { result += this[i]; if (i < this.length - 1) result += separator; } return result; };
// fill() Array.prototype.myFill = function(value, start = 0, end = this.length) { for (let i = start; i < end; i++) { this[i] = value; } return this; };
// includes() Array.prototype.myIncludes = function(searchElement, fromIndex = 0) { const startIndex = fromIndex >= 0 ? fromIndex : Math.max(0, this.length + fromIndex); for (let i = startIndex; i < this.length; i++) { if (this[i] === searchElement || (Number.isNaN(this[i]) && Number.isNaN(searchElement))) { return true; } } return false; };
// indexOf() Array.prototype.myIndexOf = function(searchElement, fromIndex = 0) { const startIndex = fromIndex >= 0 ? fromIndex : Math.max(0, this.length + fromIndex); for (let i = startIndex; i < this.length; i++) { if (this[i] === searchElement) return i; } return -1; };
// reverse() Array.prototype.myReverse = function() { let left = 0; let right = this.length - 1; while (left < right) { // Swap elements const temp = this[left]; this[left] = this[right]; this[right] = temp; left++; right--; } return this; };
// sort() Array.prototype.mySort = function(compareFn) { // Implementation of QuickSort for simplicity // Note: Actual JS engines typically use TimSort const quickSort = (arr, low, high) => { if (low < high) { const pi = partition(arr, low, high); quickSort(arr, low, pi - 1); quickSort(arr, pi + 1, high); } }; const partition = (arr, low, high) => { const pivot = arr[high]; let i = low - 1; for (let j = low; j < high; j++) { const compareResult = compareFn ? compareFn(arr[j], pivot) : String(arr[j]).localeCompare(String(pivot)); if (compareResult <= 0) { i++; [arr[i], arr[j]] = [arr[j], arr[i]]; } } [arr[i + 1], arr[high]] = [arr[high], arr[i + 1]]; return i + 1; }; quickSort(this, 0, this.length - 1); return this; };
// splice() Array.prototype.mySplice = function(start, deleteCount, ...items) { const len = this.length; const actualStart = start < 0 ? Math.max(len + start, 0) : Math.min(start, len); const actualDeleteCount = Math.min(Math.max(deleteCount || 0, 0), len - actualStart); // Store deleted elements const deleted = []; for (let i = 0; i < actualDeleteCount; i++) { deleted[i] = this[actualStart + i]; } // Shift elements if necessary const itemCount = items.length; const shiftCount = itemCount - actualDeleteCount; if (shiftCount > 0) { // Moving elements right for (let i = len - 1; i >= actualStart + actualDeleteCount; i--) { this[i + shiftCount] = this[i]; } } else if (shiftCount < 0) { // Moving elements left for (let i = actualStart + actualDeleteCount; i < len; i++) { this[i + shiftCount] = this[i]; } } // Insert new items for (let i = 0; i < itemCount; i++) { this[actualStart + i] = items[i]; } this.length = len + shiftCount; return deleted; };
// at() Array.prototype.myAt = function(index) { const actualIndex = index >= 0 ? index : this.length + index; return this[actualIndex]; };
// copyWithin() Array.prototype.myCopyWithin = function(target, start = 0, end = this.length) { const len = this.length; let to = target < 0 ? Math.max(len + target, 0) : Math.min(target, len); let from = start < 0 ? Math.max(len + start, 0) : Math.min(start, len); let final = end < 0 ? Math.max(len + end, 0) : Math.min(end, len); const count = Math.min(final - from, len - to); // Copy to temporary array to handle overlapping const temp = new Array(count); for (let i = 0; i < count; i++) { temp[i] = this[from + i]; } for (let i = 0; i < count; i++) { this[to + i] = temp[i]; } return this; };
// flat() Array.prototype.myFlat = function(depth = 1) { const flatten = (arr, currentDepth) => { const result = []; for (const item of arr) { if (Array.isArray(item) && currentDepth < depth) { result.push(...flatten(item, currentDepth + 1)); } else { result.push(item); } } return result; }; return flatten(this, 0); };
// Array.from() Array.myFrom = function(arrayLike, mapFn) { const result = []; for (let i = 0; i < arrayLike.length; i++) { result[i] = mapFn ? mapFn(arrayLike[i], i) : arrayLike[i]; } return result; };
// findLastIndex() Array.prototype.myFindLastIndex = function(predicate) { for (let i = this.length - 1; i >= 0; i--) { if (predicate(this[i], i, this)) return i; } return -1; };
// forEach() Array.prototype.myForEach = function(callback) { for (let i = 0; i < this.length; i++) { if (i in this) { // Skip holes in sparse arrays callback(this[i], i, this); } } };
Algorithme : Balayage linéaire en court-circuit
Complexité temporelle : O(n)
S'arrête à la première fausse condition
// concat() Array.prototype.myConcat = function(...arrays) { const result = [...this]; for (const arr of arrays) { for (const item of arr) { result.push(item); } } return result; };
// join() Array.prototype.myJoin = function(separator = ',') { let result = ''; for (let i = 0; i < this.length; i++) { result += this[i]; if (i < this.length - 1) result += separator; } return result; };
// fill() Array.prototype.myFill = function(value, start = 0, end = this.length) { for (let i = start; i < end; i++) { this[i] = value; } return this; };
// includes() Array.prototype.myIncludes = function(searchElement, fromIndex = 0) { const startIndex = fromIndex >= 0 ? fromIndex : Math.max(0, this.length + fromIndex); for (let i = startIndex; i < this.length; i++) { if (this[i] === searchElement || (Number.isNaN(this[i]) && Number.isNaN(searchElement))) { return true; } } return false; };
// indexOf() Array.prototype.myIndexOf = function(searchElement, fromIndex = 0) { const startIndex = fromIndex >= 0 ? fromIndex : Math.max(0, this.length + fromIndex); for (let i = startIndex; i < this.length; i++) { if (this[i] === searchElement) return i; } return -1; };
// reverse() Array.prototype.myReverse = function() { let left = 0; let right = this.length - 1; while (left < right) { // Swap elements const temp = this[left]; this[left] = this[right]; this[right] = temp; left++; right--; } return this; };
// sort() Array.prototype.mySort = function(compareFn) { // Implementation of QuickSort for simplicity // Note: Actual JS engines typically use TimSort const quickSort = (arr, low, high) => { if (low < high) { const pi = partition(arr, low, high); quickSort(arr, low, pi - 1); quickSort(arr, pi + 1, high); } }; const partition = (arr, low, high) => { const pivot = arr[high]; let i = low - 1; for (let j = low; j < high; j++) { const compareResult = compareFn ? compareFn(arr[j], pivot) : String(arr[j]).localeCompare(String(pivot)); if (compareResult <= 0) { i++; [arr[i], arr[j]] = [arr[j], arr[i]]; } } [arr[i + 1], arr[high]] = [arr[high], arr[i + 1]]; return i + 1; }; quickSort(this, 0, this.length - 1); return this; };
// splice() Array.prototype.mySplice = function(start, deleteCount, ...items) { const len = this.length; const actualStart = start < 0 ? Math.max(len + start, 0) : Math.min(start, len); const actualDeleteCount = Math.min(Math.max(deleteCount || 0, 0), len - actualStart); // Store deleted elements const deleted = []; for (let i = 0; i < actualDeleteCount; i++) { deleted[i] = this[actualStart + i]; } // Shift elements if necessary const itemCount = items.length; const shiftCount = itemCount - actualDeleteCount; if (shiftCount > 0) { // Moving elements right for (let i = len - 1; i >= actualStart + actualDeleteCount; i--) { this[i + shiftCount] = this[i]; } } else if (shiftCount < 0) { // Moving elements left for (let i = actualStart + actualDeleteCount; i < len; i++) { this[i + shiftCount] = this[i]; } } // Insert new items for (let i = 0; i < itemCount; i++) { this[actualStart + i] = items[i]; } this.length = len + shiftCount; return deleted; };
// at() Array.prototype.myAt = function(index) { const actualIndex = index >= 0 ? index : this.length + index; return this[actualIndex]; };
// copyWithin() Array.prototype.myCopyWithin = function(target, start = 0, end = this.length) { const len = this.length; let to = target < 0 ? Math.max(len + target, 0) : Math.min(target, len); let from = start < 0 ? Math.max(len + start, 0) : Math.min(start, len); let final = end < 0 ? Math.max(len + end, 0) : Math.min(end, len); const count = Math.min(final - from, len - to); // Copy to temporary array to handle overlapping const temp = new Array(count); for (let i = 0; i < count; i++) { temp[i] = this[from + i]; } for (let i = 0; i < count; i++) { this[to + i] = temp[i]; } return this; };
// flat() Array.prototype.myFlat = function(depth = 1) { const flatten = (arr, currentDepth) => { const result = []; for (const item of arr) { if (Array.isArray(item) && currentDepth < depth) { result.push(...flatten(item, currentDepth + 1)); } else { result.push(item); } } return result; }; return flatten(this, 0); };
// Array.from() Array.myFrom = function(arrayLike, mapFn) { const result = []; for (let i = 0; i < arrayLike.length; i++) { result[i] = mapFn ? mapFn(arrayLike[i], i) : arrayLike[i]; } return result; };
// findLastIndex() Array.prototype.myFindLastIndex = function(predicate) { for (let i = this.length - 1; i >= 0; i--) { if (predicate(this[i], i, this)) return i; } return -1; };
// forEach() Array.prototype.myForEach = function(callback) { for (let i = 0; i < this.length; i++) { if (i in this) { // Skip holes in sparse arrays callback(this[i], i, this); } } };
// every() Array.prototype.myEvery = function(predicate) { for (let i = 0; i < this.length; i++) { if (i in this && !predicate(this[i], i, this)) { return false; } } return true; };
// entries() Array.prototype.myEntries = function() { let index = 0; const array = this; return { [Symbol.iterator]() { return this; }, next() { if (index < array.length) { return { value: [index, array[index++]], done: false }; } return { done: true }; } }; };
// concat() Array.prototype.myConcat = function(...arrays) { const result = [...this]; for (const arr of arrays) { for (const item of arr) { result.push(item); } } return result; };
J'ai fourni des implémentations complètes des 31 méthodes de tableau que vous avez demandées.
Plongeons ensemble plus profondément dans le monde du génie logiciel ! Je partage régulièrement des informations sur JavaScript, TypeScript, Node.js, React, Next.js, les structures de données, les algorithmes, le développement Web et bien plus encore. Que vous cherchiez à améliorer vos compétences ou à collaborer sur des sujets passionnants, j'aimerais entrer en contact et grandir avec vous.
Suivez-moi : Nozibul Islam
Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!