


Créer un utilitaire pour générer 100 collections MongoDB, chacune remplie de 1 million de documents aléatoires, et le déployer sur Kubernetes implique plusieurs étapes. Ce guide décrit le processus, depuis la configuration d'un environnement Kubernetes jusqu'à la génération des collections et le déploiement de la tâche dans un espace de noms dédié.
1. Configuration de votre environnement Kubernetes
Assurez-vous d'avoir un cluster Kubernetes (tel que GKE, EKS, AKS ou Minikube) et configurez kubectl pour s'y connecter.
2. Créez un espace de noms dédié
Pour garder ce déploiement isolé, créez un espace de noms appelé my-lab :
kubectl create namespace my-lab kubectl get ns my-lab
3. Déployez MongoDB sur Kubernetes
Créer un volume persistant (PV)
Créez un fichier mongo-pv.yaml pour définir un volume persistant pour les données MongoDB :
apiVersion: v1 kind: PersistentVolume metadata: name: mongo-pv namespace: my-lab spec: capacity: storage: 10Gi accessModes: - ReadWriteOnce hostPath: path: /data/mongo
Appliquer le PV :
kubectl apply -f mongo-pv.yaml
Créer une réclamation de volume persistant (PVC)
Définissez une réclamation de volume persistante dans mongo-pvc.yaml :
apiVersion: v1 kind: PersistentVolumeClaim metadata: name: mongo-pvc namespace: my-lab spec: accessModes: - ReadWriteOnce resources: requests: storage: 10Gi
Appliquer le PVC :
kubectl apply -f mongo-pvc.yaml
Créer un déploiement MongoDB
Définissez le déploiement et le service MongoDB dans mongo-deployment.yaml :
apiVersion: apps/v1 kind: Deployment metadata: name: mongo namespace: my-lab spec: replicas: 1 selector: matchLabels: app: mongo template: metadata: labels: app: mongo spec: containers: - name: mongo image: mongo:latest ports: - containerPort: 27017 env: - name: MONGO_INITDB_ROOT_USERNAME value: "root" - name: MONGO_INITDB_ROOT_PASSWORD value: "password" volumeMounts: - name: mongo-storage mountPath: /data/db volumes: - name: mongo-storage persistentVolumeClaim: claimName: mongo-pvc --- apiVersion: v1 kind: Service metadata: name: mongo namespace: my-lab spec: type: ClusterIP ports: - port: 27017 targetPort: 27017 selector: app: mongo
Appliquer le déploiement :
kubectl apply -f mongo-deployment.yaml
4. Connectez-vous à MongoDB
Vérifiez le déploiement de MongoDB en vous y connectant :
kubectl exec -it <mongo-pod-name> -n my-lab -- mongosh -u root -p password </mongo-pod-name>
5. Vérifier la persistance
Réduisez puis sauvegardez le déploiement de MongoDB pour garantir la persistance des données :
kubectl scale deployment mongo --replicas=0 -n my-lab kubectl scale deployment mongo --replicas=1 -n my-lab
6. Créez un utilitaire Python pour la génération de collections
À l'aide de Python, définissez un script pour créer des collections et les remplir avec des documents aléatoires :
import random import string import pymongo from pymongo import MongoClient def random_string(length=10): return ''.join(random.choices(string.ascii_letters + string.digits, k=length)) def create_collections_and_populate(db_name='mydatabase', collections_count=100, documents_per_collection=1_000_000): client = MongoClient('mongodb://root:password@mongo:27017/') db = client[db_name] for i in range(collections_count): collection_name = f'collection_{i+1}' collection = db[collection_name] print(f'Creating collection: {collection_name}') bulk_data = [{'name': random_string(), 'value': random.randint(1, 100)} for _ in range(documents_per_collection)] collection.insert_many(bulk_data) print(f'Inserted {documents_per_collection} documents into {collection_name}') if __name__ == "__main__": create_collections_and_populate()
7. Dockeriser l'utilitaire Python
Créez un Dockerfile pour conteneuriser le script Python :
FROM python:3.9-slim WORKDIR /app COPY mongo_populator.py . RUN pip install pymongo CMD ["python", "mongo_populator.py"]
Créez et transférez l'image vers un registre de conteneurs :
docker build -t <your-docker-repo>/mongo-populator:latest . docker push <your-docker-repo>/mongo-populator:latest </your-docker-repo></your-docker-repo>
8. Créer une tâche Kubernetes
Définissez un travail dans mongo-populator-job.yaml pour exécuter le script de génération de collection :
apiVersion: batch/v1 kind: Job metadata: name: mongo-populator namespace: my-lab spec: template: spec: containers: - name: mongo-populator image: <your-docker-repo>/mongo-populator:latest env: - name: MONGO_URI value: "mongodb://root:password@mongo:27017/" restartPolicy: Never backoffLimit: 4 </your-docker-repo>
Postuler le poste :
kubectl apply -f mongo-populator-job.yaml
9. Vérifier la génération de la collection
Une fois le travail terminé, connectez-vous à MongoDB pour examiner les données :
kubectl exec -it <mongo-pod-name> -n my-lab -- mongosh -u root -p password </mongo-pod-name>
Dans MongoDB :
use mydatabase show collections db.collection_9.find().limit(5).pretty() db.getCollectionNames().forEach(function(collection) { var count = db[collection].countDocuments(); print(collection + ": " + count + " documents"); });
Chaque collection doit contenir 1 million de documents, confirmant que le travail de génération de données a réussi.
Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!

Python et C ont chacun leurs propres avantages, et le choix doit être basé sur les exigences du projet. 1) Python convient au développement rapide et au traitement des données en raison de sa syntaxe concise et de son typage dynamique. 2) C convient à des performances élevées et à une programmation système en raison de son typage statique et de sa gestion de la mémoire manuelle.

Le choix de Python ou C dépend des exigences du projet: 1) Si vous avez besoin de développement rapide, de traitement des données et de conception du prototype, choisissez Python; 2) Si vous avez besoin de performances élevées, de faible latence et de contrôle matériel, choisissez C.

En investissant 2 heures d'apprentissage Python chaque jour, vous pouvez améliorer efficacement vos compétences en programmation. 1. Apprenez de nouvelles connaissances: lire des documents ou regarder des tutoriels. 2. Pratique: Écrivez du code et complétez les exercices. 3. Revue: consolider le contenu que vous avez appris. 4. Pratique du projet: Appliquez ce que vous avez appris dans les projets réels. Un tel plan d'apprentissage structuré peut vous aider à maîtriser systématiquement Python et à atteindre des objectifs de carrière.

Les méthodes pour apprendre Python efficacement dans les deux heures incluent: 1. Passez en revue les connaissances de base et assurez-vous que vous connaissez l'installation de Python et la syntaxe de base; 2. Comprendre les concepts de base de Python, tels que les variables, les listes, les fonctions, etc.; 3. Master Basic et Advanced Utilisation en utilisant des exemples; 4. Apprenez des erreurs courantes et des techniques de débogage; 5. Appliquer l'optimisation des performances et les meilleures pratiques, telles que l'utilisation des compréhensions de la liste et le suivi du guide de style PEP8.

Python convient aux débutants et à la science des données, et C convient à la programmation système et au développement de jeux. 1. Python est simple et facile à utiliser, adapté à la science des données et au développement Web. 2.C fournit des performances et un contrôle élevés, adaptés au développement de jeux et à la programmation système. Le choix doit être basé sur les besoins du projet et les intérêts personnels.

Python est plus adapté à la science des données et au développement rapide, tandis que C est plus adapté aux performances élevées et à la programmation système. 1. La syntaxe Python est concise et facile à apprendre, adaptée au traitement des données et à l'informatique scientifique. 2.C a une syntaxe complexe mais d'excellentes performances et est souvent utilisée dans le développement de jeux et la programmation système.

Il est possible d'investir deux heures par jour pour apprendre Python. 1. Apprenez de nouvelles connaissances: apprenez de nouveaux concepts en une heure, comme les listes et les dictionnaires. 2. Pratique et pratique: utilisez une heure pour effectuer des exercices de programmation, tels que la rédaction de petits programmes. Grâce à une planification et à une persévérance raisonnables, vous pouvez maîtriser les concepts de base de Python en peu de temps.

Python est plus facile à apprendre et à utiliser, tandis que C est plus puissant mais complexe. 1. La syntaxe Python est concise et adaptée aux débutants. Le typage dynamique et la gestion automatique de la mémoire le rendent facile à utiliser, mais peuvent entraîner des erreurs d'exécution. 2.C fournit des fonctionnalités de contrôle de bas niveau et avancées, adaptées aux applications haute performance, mais a un seuil d'apprentissage élevé et nécessite une gestion manuelle de la mémoire et de la sécurité.


Outils d'IA chauds

Undresser.AI Undress
Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover
Outil d'IA en ligne pour supprimer les vêtements des photos.

Undress AI Tool
Images de déshabillage gratuites

Clothoff.io
Dissolvant de vêtements AI

Video Face Swap
Échangez les visages dans n'importe quelle vidéo sans effort grâce à notre outil d'échange de visage AI entièrement gratuit !

Article chaud

Outils chauds

VSCode Windows 64 bits Télécharger
Un éditeur IDE gratuit et puissant lancé par Microsoft

Télécharger la version Mac de l'éditeur Atom
L'éditeur open source le plus populaire

Version crackée d'EditPlus en chinois
Petite taille, coloration syntaxique, ne prend pas en charge la fonction d'invite de code

Dreamweaver CS6
Outils de développement Web visuel

SublimeText3 version anglaise
Recommandé : version Win, prend en charge les invites de code !
