recherche
Maisondéveloppement back-endTutoriel PythonComment remplacer les valeurs manquantes dans les DataFrames Pandas par des moyennes de colonnes ?

How to Replace Missing Values in Pandas DataFrames with Column Averages?

Remplacement des valeurs NaN par des moyennes de colonnes dans les DataFrames Pandas

Lorsque vous travaillez avec des DataFrames Pandas, il est courant de rencontrer des valeurs NaN (manquantes). Pour gérer efficacement ces valeurs, il est crucial de les remplacer par des valeurs appropriées. Un moyen efficace consiste à remplacer les valeurs NaN par la moyenne de leurs colonnes respectives.

Solution utilisant DataFrame.fillna

Contrairement à l'approche mentionnée dans la question référencée, les pandas DataFrames peut être traité différemment. La méthode DataFrame.fillna fournit une solution simple pour remplir les valeurs NaN :

<code class="python">df.fillna(df.mean())</code>

Explication détaillée :

  • La fonction df.mean() calcule le moyenne de chaque colonne du DataFrame.
  • La méthode fillna prend les moyennes calculées et remplit les valeurs NaN dans chaque colonne avec la moyenne correspondante.

Exemple :

Considérons le DataFrame suivant :

          A         B         C
0 -0.166919  0.979728 -0.632955
1 -0.297953 -0.912674 -1.365463
2 -0.120211 -0.540679 -0.680481
3       NaN -2.027325  1.533582
4       NaN       NaN  0.461821
5 -0.788073       NaN       NaN
6 -0.916080 -0.612343       NaN
7 -0.887858  1.033826       NaN
8  1.948430  1.025011 -2.982224
9  0.019698 -0.795876 -0.046431

Après avoir appliqué la méthode fillna avec des moyennes :

          A         B         C
0 -0.166919  0.979728 -0.632955
1 -0.297953 -0.912674 -1.365463
2 -0.120211 -0.540679 -0.680481
3 -0.151121 -2.027325  1.533582
4 -0.151121 -0.231291  0.461821
5 -0.788073 -0.231291 -0.530307
6 -0.916080 -0.612343 -0.530307
7 -0.887858  1.033826 -0.530307
8  1.948430  1.025011 -2.982224
9  0.019698 -0.795876 -0.046431

Comme démontré, les valeurs NaN ont été remplacées par les moyennes des colonnes correspondantes.

Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!

Déclaration
Le contenu de cet article est volontairement contribué par les internautes et les droits d'auteur appartiennent à l'auteur original. Ce site n'assume aucune responsabilité légale correspondante. Si vous trouvez un contenu suspecté de plagiat ou de contrefaçon, veuillez contacter admin@php.cn
Comment les tableaux sont-ils utilisés dans l'informatique scientifique avec Python?Comment les tableaux sont-ils utilisés dans l'informatique scientifique avec Python?Apr 25, 2025 am 12:28 AM

ArraySinpython, en particulier Vianumpy, arecrucialinsciciencomputingfortheirefficiency andversatity.1) ils sont les opérations de data-analyse et la machineauning.2)

Comment gérez-vous différentes versions Python sur le même système?Comment gérez-vous différentes versions Python sur le même système?Apr 25, 2025 am 12:24 AM

Vous pouvez gérer différentes versions Python en utilisant Pyenv, Venv et Anaconda. 1) Utilisez PYENV pour gérer plusieurs versions Python: installer PYENV, définir les versions globales et locales. 2) Utilisez VENV pour créer un environnement virtuel pour isoler les dépendances du projet. 3) Utilisez Anaconda pour gérer les versions Python dans votre projet de science des données. 4) Gardez le Système Python pour les tâches au niveau du système. Grâce à ces outils et stratégies, vous pouvez gérer efficacement différentes versions de Python pour assurer le bon fonctionnement du projet.

Quels sont les avantages de l'utilisation de tableaux Numpy sur des tableaux Python standard?Quels sont les avantages de l'utilisation de tableaux Numpy sur des tableaux Python standard?Apr 25, 2025 am 12:21 AM

NumpyArrayShaveSeveralAdvantages OverStandardPyThonarRays: 1) TheaReMuchfasterDuetoc-bases Implementation, 2) Ils sont économisés par le therdémor

Comment la nature homogène des tableaux affecte-t-elle les performances?Comment la nature homogène des tableaux affecte-t-elle les performances?Apr 25, 2025 am 12:13 AM

L'impact de l'homogénéité des tableaux sur les performances est double: 1) L'homogénéité permet au compilateur d'optimiser l'accès à la mémoire et d'améliorer les performances; 2) mais limite la diversité du type, ce qui peut conduire à l'inefficacité. En bref, le choix de la bonne structure de données est crucial.

Quelles sont les meilleures pratiques pour écrire des scripts Python exécutables?Quelles sont les meilleures pratiques pour écrire des scripts Python exécutables?Apr 25, 2025 am 12:11 AM

Tocraftexecutablepythonscripts, suivant les autres proches: 1) addashebangline (#! / Usr / bin / leppython3) tomakethescriptexecutable.2) setpermisessionswithchmod xyour_script.py.3) organisationwithacleardocstringanduseifname == "__ __" Main __ ".

En quoi les tableaux Numpy diffèrent-ils des tableaux créés à l'aide du module de tableau?En quoi les tableaux Numpy diffèrent-ils des tableaux créés à l'aide du module de tableau?Apr 24, 2025 pm 03:53 PM

NumpyArraysarebetterFornumericalOperations andMulti-dimensionaldata, tandis que la réalisation de la réalisation

Comment l'utilisation des tableaux Numpy se compare-t-il à l'utilisation des tableaux de modules de tableau dans Python?Comment l'utilisation des tableaux Numpy se compare-t-il à l'utilisation des tableaux de modules de tableau dans Python?Apr 24, 2025 pm 03:49 PM

NumpyArraysareBetterForheAVYVumericalComputing, tandis que la réalisation de points contraints de réalisation.1) NumpyArraySoFerversATACTORATIONS ajusté pour les données

Comment le module CTYPES est-il lié aux tableaux dans Python?Comment le module CTYPES est-il lié aux tableaux dans Python?Apr 24, 2025 pm 03:45 PM

CTYPESALLOWSCREATINGAndMANIPulationc-styLearRaySInpython.1) UsectypeStOinterfaceWithClibraryForPerformance.2) Createc-stylearRaysFornumericalComptations.3) PassArrayStocfunction

See all articles

Outils d'IA chauds

Undresser.AI Undress

Undresser.AI Undress

Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover

AI Clothes Remover

Outil d'IA en ligne pour supprimer les vêtements des photos.

Undress AI Tool

Undress AI Tool

Images de déshabillage gratuites

Clothoff.io

Clothoff.io

Dissolvant de vêtements AI

Video Face Swap

Video Face Swap

Échangez les visages dans n'importe quelle vidéo sans effort grâce à notre outil d'échange de visage AI entièrement gratuit !

Outils chauds

Version crackée d'EditPlus en chinois

Version crackée d'EditPlus en chinois

Petite taille, coloration syntaxique, ne prend pas en charge la fonction d'invite de code

Dreamweaver Mac

Dreamweaver Mac

Outils de développement Web visuel

Bloc-notes++7.3.1

Bloc-notes++7.3.1

Éditeur de code facile à utiliser et gratuit

MantisBT

MantisBT

Mantis est un outil Web de suivi des défauts facile à déployer, conçu pour faciliter le suivi des défauts des produits. Cela nécessite PHP, MySQL et un serveur Web. Découvrez nos services de démonstration et d'hébergement.

Dreamweaver CS6

Dreamweaver CS6

Outils de développement Web visuel