Maison > Article > développement back-end > Comment extraire efficacement l'union des chaînes des DataFrames Pandas groupés ?
Union de chaînes dans Pandas GroupBy
Cette question répond à un défi commun : extraire une union de chaînes d'un Pandas DataFrame regroupées par un spécifique colonne. Malheureusement, utiliser la fonction sum() sur une colonne contenant des chaînes ne les concatène pas. Au lieu de cela, cet article explore des méthodes alternatives pour obtenir le résultat souhaité.
Utiliser GroupBy avec une fonction personnalisée
Une solution consiste à définir une fonction personnalisée qui applique une opération spécifique. à chaque groupe. Par exemple, nous pouvons utiliser la méthode apply() pour parcourir les groupes et renvoyer la valeur souhaitée. Voici comment :
<code class="python">def my_function(group): return "{%s}" % ', '.join(group['C'])</code>
Cette fonction combine les chaînes de la colonne « C » de chaque groupe dans un ensemble entouré d'accolades.
<code class="python">df.groupby('A')['C'].apply(my_function)</code>
Utilisation de GroupBy avec lambda Expression
Une syntaxe plus simple consiste à utiliser une expression lambda :
<code class="python">df.groupby('A')['C'].apply(lambda x: "{%s}" % ', '.join(x))</code>
Cette expression lambda effectue la même opération de concaténation que la fonction personnalisée.
Combinaison de groupes
Parfois, il peut être utile de combiner les informations de plusieurs groupes en une seule série. Voici un exemple :
<code class="python">def f(group): return Series(dict(A=group['A'].sum(), B=group['B'].sum(), C="{%s}" % ', '.join(group['C'])))</code>
Cette fonction agrège les colonnes « A » et « B » à l'aide de sum() et combine les colonnes « C » dans un ensemble.
<code class="python">df.groupby('A').apply(f)</code>
Ceci L'approche génère un DataFrame avec les valeurs agrégées pour chaque groupe.
En employant ces méthodes, vous pouvez extraire efficacement l'union des chaînes des DataFrames Pandas groupés, ouvrant ainsi la possibilité d'analyser et de visualiser des données textuelles de manière significative. .
Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!