Maison >développement back-end >Tutoriel Python >Janus B : un modèle unifié pour la compréhension multimodale et les tâches de génération

Janus B : un modèle unifié pour la compréhension multimodale et les tâches de génération

Patricia Arquette
Patricia Arquetteoriginal
2024-10-19 12:16:291078parcourir

Janus 1.3B

Janus est un nouveau cadre autorégressif qui intègre la compréhension et la génération multimodales. Contrairement aux modèles précédents, qui utilisaient un seul encodeur visuel pour les tâches de compréhension et de génération, Janus introduit deux voies d'encodage visuel distinctes pour ces fonctions.

Différences de codage pour la compréhension et la génération

  • Dans les tâches de compréhension multimodales, l'encodeur visuel extrait des informations sémantiques de haut niveau telles que les catégories d'objets et les attributs visuels. Cet encodeur se concentre sur la déduction de significations complexes, en mettant l'accent sur les éléments sémantiques de dimension supérieure.
  • D'autre part, dans les tâches de génération visuelle, l'accent est mis sur la génération de détails fins et le maintien d'une cohérence globale. En conséquence, un codage de dimension inférieure capable de capturer les structures spatiales et les textures est requis.

Configuration de l'environnement

Voici les étapes pour exécuter Janus dans Google Colab :

git clone https://github.com/deepseek-ai/Janus
cd Janus
pip install -e .
# If needed, install the following as well
# pip install wheel
# pip install flash-attn --no-build-isolation

Tâches de vision

Chargement du modèle

Utilisez le code suivant pour charger le modèle nécessaire aux tâches de vision :

import torch
from transformers import AutoModelForCausalLM
from janus.models import MultiModalityCausalLM, VLChatProcessor
from janus.utils.io import load_pil_images

# Specify the model path
model_path = "deepseek-ai/Janus-1.3B"
vl_chat_processor = VLChatProcessor.from_pretrained(model_path)
tokenizer = vl_chat_processor.tokenizer

vl_gpt = AutoModelForCausalLM.from_pretrained(model_path, trust_remote_code=True)
vl_gpt = vl_gpt.to(torch.bfloat16).cuda().eval()

Chargement et préparation des images pour l'encodage

Ensuite, chargez l'image et convertissez-la dans un format que le modèle peut comprendre :

conversation = [
    {
        "role": "User",
        "content": "<image_placeholder>\nDescribe this chart.",
        "images": ["images/pie_chart.png"],
    },
    {"role": "Assistant", "content": ""},
]

# Load the image and prepare input
pil_images = load_pil_images(conversation)
prepare_inputs = vl_chat_processor(
    conversations=conversation, images=pil_images, force_batchify=True
).to(vl_gpt.device)

# Run the image encoder and obtain image embeddings
inputs_embeds = vl_gpt.prepare_inputs_embeds(**prepare_inputs)

Générer une réponse

Enfin, exécutez le modèle pour générer une réponse :

# Run the model and generate a response
outputs = vl_gpt.language_model.generate(
    inputs_embeds=inputs_embeds,
    attention_mask=prepare_inputs.attention_mask,
    pad_token_id=tokenizer.eos_token_id,
    bos_token_id=tokenizer.bos_token_id,
    eos_token_id=tokenizer.eos_token_id,
    max_new_tokens=512,
    do_sample=False,
    use_cache=True,
)

answer = tokenizer.decode(outputs[0].cpu().tolist(), skip_special_tokens=True)
print(f"{prepare_inputs['sft_format'][0]}", answer)

Exemple de sortie

Janus B: A Unified Model for Multimodal Understanding and Generation Tasks

The image depicts a pie chart that illustrates the distribution of four different categories among four distinct groups. The chart is divided into four segments, each representing a category with a specific percentage. The categories and their corresponding percentages are as follows:

1. **Hogs**: This segment is colored in orange and represents 30.0% of the total.
2. **Frog**: This segment is colored in blue and represents 15.0% of the total.
3. **Logs**: This segment is colored in red and represents 10.0% of the total.
4. **Dogs**: This segment is colored in green and represents 45.0% of the total.

The pie chart is visually divided into four segments, each with a different color and corresponding percentage. The segments are arranged in a clockwise manner starting from the top-left, moving clockwise. The percentages are clearly labeled next to each segment.

The chart is a simple visual representation of data, where the size of each segment corresponds to the percentage of the total category it represents. This type of chart is commonly used to compare the proportions of different categories in a dataset.

To summarize, the pie chart shows the following:
- Hogs: 30.0%
- Frog: 15.0%
- Logs: 10.0%
- Dogs: 45.0%

This chart can be used to understand the relative proportions of each category in the given dataset.

Le résultat démontre une compréhension appropriée de l'image, y compris ses couleurs et son texte.

Tâches de génération d'images

Chargement du modèle

Chargez le modèle nécessaire aux tâches de génération d'images avec le code suivant :

import os
import PIL.Image
import torch
import numpy as np
from transformers import AutoModelForCausalLM
from janus.models import MultiModalityCausalLM, VLChatProcessor

# Specify the model path
model_path = "deepseek-ai/Janus-1.3B"
vl_chat_processor = VLChatProcessor.from_pretrained(model_path)
tokenizer = vl_chat_processor.tokenizer

vl_gpt = AutoModelForCausalLM.from_pretrained(model_path, trust_remote_code=True)
vl_gpt = vl_gpt.to(torch.bfloat16).cuda().eval()

Préparation de l'invite

Ensuite, préparez l'invite en fonction de la demande de l'utilisateur :

# Set up the prompt
conversation = [
    {
        "role": "User",
        "content": "cute japanese girl, wearing a bikini, in a beach",
    },
    {"role": "Assistant", "content": ""},
]

# Convert the prompt into the appropriate format
sft_format = vl_chat_processor.apply_sft_template_for_multi_turn_prompts(
    conversations=conversation,
    sft_format=vl_chat_processor.sft_format,
    system_prompt="",
)

prompt = sft_format + vl_chat_processor.image_start_tag

Générer l'image

La fonction suivante est utilisée pour générer des images. Par défaut, 16 images sont générées :

@torch.inference_mode()
def generate(
    mmgpt: MultiModalityCausalLM,
    vl_chat_processor: VLChatProcessor,
    prompt: str,
    temperature: float = 1,
    parallel_size: int = 16,
    cfg_weight: float = 5,
    image_token_num_per_image: int = 576,
    img_size: int = 384,
    patch_size: int = 16,
):
    input_ids = vl_chat_processor.tokenizer.encode(prompt)
    input_ids = torch.LongTensor(input_ids)

    tokens = torch.zeros((parallel_size*2, len(input_ids)), dtype=torch.int).cuda()
    for i in range(parallel_size*2):
        tokens[i, :] = input_ids
        if i % 2 != 0:
            tokens[i, 1:-1] = vl_chat_processor.pad_id

    inputs_embeds = mmgpt.language_model.get_input_embeddings()(tokens)

    generated_tokens = torch.zeros((parallel_size, image_token_num_per_image), dtype=torch.int).cuda()

    for i in range(image_token_num_per_image):
        outputs = mmgpt.language_model.model(
            inputs_embeds=inputs_embeds,
            use_cache=True,
            past_key_values=outputs.past_key_values if i != 0 else None,
        )
        hidden_states = outputs.last_hidden_state

        logits = mmgpt.gen_head(hidden_states[:, -1, :])
        logit_cond = logits[0::2, :]
        logit_uncond = logits[1::2, :]

        logits = logit_uncond + cfg_weight * (logit_cond - logit_uncond)
        probs = torch.softmax(logits / temperature, dim=-1)

        next_token = torch.multinomial(probs, num_samples=1)
        generated_tokens[:, i] = next_token.squeeze(dim=-1)

        next_token = torch.cat([next_token.unsqueeze(dim=1), next_token.unsqueeze(dim=1)], dim=1).view(-1)
        img_embeds = mmgpt.prepare_gen_img_embeds(next_token)
        inputs_embeds = img_embeds.unsqueeze(dim=1)

    dec = mmgpt.gen_vision_model.decode_code(
        generated_tokens.to(dtype=torch.int),
        shape=[parallel_size, 8, img_size // patch_size, img_size // patch_size],
    )
    dec = dec.to(torch.float32).cpu().numpy().transpose(0, 2, 3, 1)
    dec = np.clip((dec + 1) / 2 * 255, 0, 255)

    visual_img = np.zeros((parallel_size, img_size, img_size, 3), dtype=np.uint8)
    visual_img[:, :, :] = dec

    os.makedirs('generated_samples', exist_ok=True)
    for i in range(parallel_size):
        save_path = os.path.join('generated_samples', f"img_{i}.jpg")
        PIL.Image.fromarray(visual_img[i]).save(save_path)

# Run the image generation
generate(vl_gpt, vl_chat_processor, prompt)

Les images générées seront enregistrées dans le dossier Generated_samples.

Échantillon de résultats générés

Ci-dessous un exemple d'image générée :

Janus B: A Unified Model for Multimodal Understanding and Generation Tasks

  • Les Les chiens sont relativement bien représentés.
  • Les Bâtiments conservent leur forme générale, même si certains détails, comme les fenêtres, peuvent sembler irréalistes.
  • Les humains, cependant, sont difficiles à bien générer, avec des distorsions notables dans les styles photo-réalistes et animés.

Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!

Déclaration:
Le contenu de cet article est volontairement contribué par les internautes et les droits d'auteur appartiennent à l'auteur original. Ce site n'assume aucune responsabilité légale correspondante. Si vous trouvez un contenu suspecté de plagiat ou de contrefaçon, veuillez contacter admin@php.cn