


Polars vs Pandas : quelle est la différence ?
Si vous avez suivi les développements récents de Python, vous avez probablement entendu parler de Polars, une nouvelle bibliothèque permettant de travailler avec des données. Alors que pandas est la bibliothèque incontournable depuis longtemps, Polars fait des vagues, notamment pour la gestion de grands ensembles de données. Alors, quel est le problème avec Polars ? En quoi est-il différent des pandas ? Décomposons-le.
Qu’est-ce que Polars ?
Polars est une bibliothèque open source gratuite construite en Rust (un langage de programmation rapide et moderne). Il est conçu pour aider les développeurs Python à gérer les données de manière plus rapide et plus efficace. Considérez-le comme une alternative aux pandas, qui brille lorsque vous travaillez avec des ensembles de données très volumineux avec lesquels les pandas pourraient avoir des difficultés.
Pourquoi Polars a-t-il été créé ?
Pandas existe depuis des années et beaucoup de gens aiment toujours l'utiliser. Mais à mesure que les données sont devenues plus volumineuses et plus complexes, les pandas ont commencé à montrer certaines faiblesses. Ritchie Vink, le créateur de Polars, a remarqué ces problèmes et a décidé de créer quelque chose de plus rapide et de plus efficace. Même Wes McKinney, le créateur des pandas, a admis dans un article de blog intitulé "10 choses que je déteste à propos des pandas" que les pandas pourraient bénéficier d'améliorations, en particulier avec de grands ensembles de données.
C'est là qu'intervient Polars, il est conçu pour être extrêmement rapide et efficace en termes de mémoire, deux choses avec lesquelles les pandas ont du mal à gérer le Big Data.
Différences clés : polaires et pandas
1. Vitesse
Polars est très rapide. En fait, certains benchmarks montrent que les Polars peuvent être jusqu'à 5 à 10 fois plus rapides que les pandas lors de l'exécution d'opérations courantes, comme le filtrage ou le regroupement de données. Cette différence de vitesse est particulièrement visible lorsque vous travaillez avec de grands ensembles de données.
2. Utilisation de la mémoire
Polars est beaucoup plus efficace en matière de mémoire. Il utilise environ 5 à 10 fois moins de mémoire que les pandas, ce qui signifie que vous pouvez travailler avec des ensembles de données beaucoup plus volumineux sans rencontrer de problèmes de mémoire.
3. Exécution paresseuse
Polars utilise quelque chose appelé exécution paresseuse, ce qui signifie qu'il n'exécute pas immédiatement chaque opération au fur et à mesure que vous l'écrivez. Au lieu de cela, il attend que vous ayez écrit une série d’opérations, puis les exécute toutes en même temps. Cela l’aide à optimiser et à exécuter les choses plus rapidement. Pandas, en revanche, exécute chaque opération immédiatement, ce qui peut être plus lent pour les tâches volumineuses.
4. Multithreading
Polars peut utiliser plusieurs cœurs de processeur en même temps pour traiter les données, ce qui le rend encore plus rapide pour les grands ensembles de données. Pandas est principalement monothread, ce qui signifie qu'il ne peut utiliser qu'un seul cœur de processeur à la fois, ce qui ralentit les choses, en particulier avec de grands ensembles de données.
Pourquoi Polars est-il si rapide ?
Polars est rapide pour plusieurs raisons :
- Il est construit en Rust, un langage de programmation connu pour sa rapidité et sa sécurité, ce qui le rend super efficace.
- Il utilise Apache Arrow, une manière spéciale de stocker des données en mémoire qui facilite et accélère le travail avec différents langages de programmation.
Cette combinaison de Rust et Apache Arrow donne aux Polars l'avantage sur les pandas en termes de vitesse et d'utilisation de la mémoire.
Forces et limites des pandas
Bien que Polars soit idéal pour le big data, les pandas ont toujours leur place. Pandas fonctionne très bien avec des ensembles de données de petite à moyenne taille et existe depuis si longtemps qu'il possède des tonnes de fonctionnalités et une énorme communauté. Donc, si vous ne travaillez pas avec d’énormes ensembles de données, les pandas pourraient toujours être votre meilleure option.
Cependant, à mesure que vos ensembles de données augmentent, les pandas ont tendance à utiliser plus de mémoire et deviennent plus lents, ce qui fait de Polars un meilleur choix dans ces situations.
Quand devriez-vous utiliser les Polars ?
Vous devriez envisager d'utiliser Polars si :
- You’re working with large datasets (millions or billions of rows).
- You need speed and performance to get your tasks done quickly.
- You have memory constraints and need to save on how much RAM you’re using.
Conclusion
Both Polars and pandas have their strengths. If you’re working with small to medium datasets, pandas is still a great tool. But if you’re dealing with large datasets and need something faster and more memory efficient, Polars is definitely worth trying out. Its performance boosts, thanks to Rust and Apache Arrow, make it a fantastic option for data-intensive tasks.
As Python continues to evolve, Polars might just become the new goto tool for handling big data.
Happy Coding ? ?
Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!

Python est plus facile à apprendre et à utiliser, tandis que C est plus puissant mais complexe. 1. La syntaxe Python est concise et adaptée aux débutants. Le typage dynamique et la gestion automatique de la mémoire le rendent facile à utiliser, mais peuvent entraîner des erreurs d'exécution. 2.C fournit des fonctionnalités de contrôle de bas niveau et avancées, adaptées aux applications haute performance, mais a un seuil d'apprentissage élevé et nécessite une gestion manuelle de la mémoire et de la sécurité.

Python et C ont des différences significatives dans la gestion et le contrôle de la mémoire. 1. Python utilise la gestion automatique de la mémoire, basée sur le comptage des références et la collecte des ordures, simplifiant le travail des programmeurs. 2.C nécessite une gestion manuelle de la mémoire, en fournissant plus de contrôle mais en augmentant la complexité et le risque d'erreur. Quelle langue choisir doit être basée sur les exigences du projet et la pile de technologie d'équipe.

Les applications de Python en informatique scientifique comprennent l'analyse des données, l'apprentissage automatique, la simulation numérique et la visualisation. 1.Numpy fournit des tableaux multidimensionnels et des fonctions mathématiques efficaces. 2. Scipy étend la fonctionnalité Numpy et fournit des outils d'optimisation et d'algèbre linéaire. 3. Pandas est utilisé pour le traitement et l'analyse des données. 4.Matplotlib est utilisé pour générer divers graphiques et résultats visuels.

Que ce soit pour choisir Python ou C dépend des exigences du projet: 1) Python convient au développement rapide, à la science des données et aux scripts en raison de sa syntaxe concise et de ses bibliothèques riches; 2) C convient aux scénarios qui nécessitent des performances élevées et un contrôle sous-jacent, tels que la programmation système et le développement de jeux, en raison de sa compilation et de sa gestion de la mémoire manuelle.

Python est largement utilisé dans la science des données et l'apprentissage automatique, s'appuyant principalement sur sa simplicité et son puissant écosystème de bibliothèque. 1) Pandas est utilisé pour le traitement et l'analyse des données, 2) Numpy fournit des calculs numériques efficaces, et 3) Scikit-Learn est utilisé pour la construction et l'optimisation du modèle d'apprentissage automatique, ces bibliothèques font de Python un outil idéal pour la science des données et l'apprentissage automatique.

Est-ce suffisant pour apprendre Python pendant deux heures par jour? Cela dépend de vos objectifs et de vos méthodes d'apprentissage. 1) Élaborer un plan d'apprentissage clair, 2) Sélectionnez les ressources et méthodes d'apprentissage appropriées, 3) la pratique et l'examen et la consolidation de la pratique pratique et de l'examen et de la consolidation, et vous pouvez progressivement maîtriser les connaissances de base et les fonctions avancées de Python au cours de cette période.

Les applications clés de Python dans le développement Web incluent l'utilisation des cadres Django et Flask, le développement de l'API, l'analyse et la visualisation des données, l'apprentissage automatique et l'IA et l'optimisation des performances. 1. Framework Django et Flask: Django convient au développement rapide d'applications complexes, et Flask convient aux projets petits ou hautement personnalisés. 2. Développement de l'API: Utilisez Flask ou DjangorestFramework pour construire RestulAPI. 3. Analyse et visualisation des données: utilisez Python pour traiter les données et les afficher via l'interface Web. 4. Apprentissage automatique et AI: Python est utilisé pour créer des applications Web intelligentes. 5. Optimisation des performances: optimisée par la programmation, la mise en cache et le code asynchrones

Python est meilleur que C dans l'efficacité du développement, mais C est plus élevé dans les performances d'exécution. 1. La syntaxe concise de Python et les bibliothèques riches améliorent l'efficacité du développement. Les caractéristiques de type compilation et le contrôle du matériel de CC améliorent les performances d'exécution. Lorsque vous faites un choix, vous devez peser la vitesse de développement et l'efficacité de l'exécution en fonction des besoins du projet.


Outils d'IA chauds

Undresser.AI Undress
Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover
Outil d'IA en ligne pour supprimer les vêtements des photos.

Undress AI Tool
Images de déshabillage gratuites

Clothoff.io
Dissolvant de vêtements AI

AI Hentai Generator
Générez AI Hentai gratuitement.

Article chaud

Outils chauds

Bloc-notes++7.3.1
Éditeur de code facile à utiliser et gratuit

Listes Sec
SecLists est le compagnon ultime du testeur de sécurité. Il s'agit d'une collection de différents types de listes fréquemment utilisées lors des évaluations de sécurité, le tout en un seul endroit. SecLists contribue à rendre les tests de sécurité plus efficaces et productifs en fournissant facilement toutes les listes dont un testeur de sécurité pourrait avoir besoin. Les types de listes incluent les noms d'utilisateur, les mots de passe, les URL, les charges utiles floues, les modèles de données sensibles, les shells Web, etc. Le testeur peut simplement extraire ce référentiel sur une nouvelle machine de test et il aura accès à tous les types de listes dont il a besoin.

PhpStorm version Mac
Le dernier (2018.2.1) outil de développement intégré PHP professionnel

Télécharger la version Mac de l'éditeur Atom
L'éditeur open source le plus populaire

ZendStudio 13.5.1 Mac
Puissant environnement de développement intégré PHP