Les décorateurs en Python sont un outil puissant qui vous permet de modifier le comportement des fonctions ou des méthodes sans changer leur code source. Ils offrent un moyen simple d'ajouter des fonctionnalités et sont largement utilisés pour la journalisation, l'application de règles et l'optimisation des performances.
Dans cet article, nous examinerons six décorateurs Python courants avec des exemples simples.
1 - @staticmethod : Définir des méthodes statiques
Le décorateur @staticmethod crée des méthodes qui n'accèdent pas aux données d'instance (self) ou de classe (cls). Elle se comporte comme une fonction normale mais peut être appelée depuis la classe ou une instance.
Exemple :
class MyClass: @staticmethod def greet(): return "Hello from static method!"
2 - @classmethod : Définir les méthodes de classe
Le décorateur @classmethod vous permet de définir des méthodes qui prennent la classe (cls) comme premier argument. Ceci est utile pour les méthodes d'usine ou pour modifier l'état de la classe.
Exemple :
class MyClass: count = 0 @classmethod def increment_count(cls): cls.count += 1
3 - @property : Définir les attributs en lecture seule
Le décorateur @property permet d'accéder aux méthodes comme aux attributs. C'est utile lorsque vous souhaitez contrôler l'accès à une propriété sans exposer l'implémentation interne.
Exemple :
class Circle: def __init__(self, radius): self._radius = radius @property def area(self): return 3.14 * self._radius ** 2
4 - @functools.lru_cache : Cache les résultats des fonctions coûteuses
Le décorateur @lru_cache (de functools) met en cache les résultats des appels de fonction pour éviter un recalcul. Cela peut améliorer considérablement les performances des fonctions coûteuses ou fréquemment appelées.
Exemple :
from functools import lru_cache @lru_cache(maxsize=32) def expensive_computation(x): return x ** 2
5 - @functools.wraps : Conserver les métadonnées dans les décorateurs personnalisés
Lors de l'écriture de décorateurs personnalisés, le décorateur @wraps préserve les métadonnées (nom, docstring) de la fonction d'origine, garantissant ainsi que les outils d'introspection fonctionnent toujours.
Exemple :
from functools import wraps def my_decorator(func): @wraps(func) def wrapper(*args, **kwargs): return func(*args, **kwargs) return wrapper
6 - @dataclass : Simplifier les définitions de classe
Le décorateur @dataclass (du module dataclasses) génère automatiquement des méthodes comme init() et repr() pour les classes. C’est parfait pour les cours détenant des données.
Exemple :
from dataclasses import dataclass @dataclass class Point: x: int y: int
Conclusion
Les décorateurs Python comme @staticmethod, @classmethod, @property, @lru_cache, @wraps et @dataclass aident à écrire du code plus propre et plus efficace en enveloppant les fonctionnalités autour des méthodes et des fonctions. Ce sont des outils polyvalents qui peuvent simplifier de nombreuses tâches de programmation.
Sources
Définition du décorateur Python
@staticmethod
@classmethod
@propriété
@functools.lru_cache
@functools.wraps
@dataclass
Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!

SlitingyPapyThonListIsDoneUsingTheSyntaxList [Démarrage: arrêt: étape] .He'showitworks: 1) startisheindexofthefirStelementoinclude.2) stopisTheIndexoftheFirstelementsoexclude.3) StepistheincrementBetweenselans.it'susefulfactingPortationSoListShsandCanusegeg

NumpyAllowsForvariousOperations ONARRAYS: 1) BasicarithmeticLikeaddition, Soustraction, Multiplication, anddivision; 2) AdvancedOperationSuchasmatrixMultiplication; 3) Element-Wiseoperations withoutExplicitloop

ArraySinpython, en particulier ThroughNumpyandPandas, aressentialfordataanalysis, offingspeeedAfficiency.1) numpyarrayablefficienthandlingoflargedatasetsandComplexOperationsLikEMoVingAverages.2)

ListsandNumpyArraysInpythonHaveDidifferentMemoryfootprints: listsaRemoreFlexibles Butlessmemory économe, tandis que la liste de résensés est-ce qui

ToenSurepythonscriptsBeHavecorrectlyAcrossDevelopment, mise en scène et production, catégories de type: 1) EnvironmentVariblesForsImplesettings, 2) ConfigurationFilesForComplexsetups et3) dynamicloadingforadaptability.eachMethodoffersNebeneFitsAndreCeresca

La syntaxe de base pour le découpage de la liste Python est la liste [Démarrage: arrêt: étape]. 1.Start est le premier index d'élément inclus, 2.STOP est le premier indice d'élément exclu et 3.StEP détermine la taille de l'étape entre les éléments. Les tranches sont non seulement utilisées pour extraire les données, mais aussi pour modifier et inverser les listes.

ListesoutPerformarRaySin: 1) dynamicingizingandfrequentinSertions / Deletions, 2) StoringheteroGeneousData, and3) MemoryEfficiencyForsparsedata, butmayhaveslightperformanceCostSincertorations.

Toconvertapythonarraytoalist, usethelist () Constructororageneratorexpression.1) ImportTheArrayModuleandCreateArray.2) Uselist (Arr) ou [Xforxinarr] à Convertittoalist, considérant la performance et le domaine de l'émie-efficacité pour les étages.


Outils d'IA chauds

Undresser.AI Undress
Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover
Outil d'IA en ligne pour supprimer les vêtements des photos.

Undress AI Tool
Images de déshabillage gratuites

Clothoff.io
Dissolvant de vêtements AI

Video Face Swap
Échangez les visages dans n'importe quelle vidéo sans effort grâce à notre outil d'échange de visage AI entièrement gratuit !

Article chaud

Outils chauds

Envoyer Studio 13.0.1
Puissant environnement de développement intégré PHP

MantisBT
Mantis est un outil Web de suivi des défauts facile à déployer, conçu pour faciliter le suivi des défauts des produits. Cela nécessite PHP, MySQL et un serveur Web. Découvrez nos services de démonstration et d'hébergement.

SublimeText3 version chinoise
Version chinoise, très simple à utiliser

SublimeText3 Linux nouvelle version
Dernière version de SublimeText3 Linux

Listes Sec
SecLists est le compagnon ultime du testeur de sécurité. Il s'agit d'une collection de différents types de listes fréquemment utilisées lors des évaluations de sécurité, le tout en un seul endroit. SecLists contribue à rendre les tests de sécurité plus efficaces et productifs en fournissant facilement toutes les listes dont un testeur de sécurité pourrait avoir besoin. Les types de listes incluent les noms d'utilisateur, les mots de passe, les URL, les charges utiles floues, les modèles de données sensibles, les shells Web, etc. Le testeur peut simplement extraire ce référentiel sur une nouvelle machine de test et il aura accès à tous les types de listes dont il a besoin.
