Maison > Article > base de données > Une comparaison complète de PostgreSQL et MySQL
Jetons un coup d'œil rapide à PostgreSQL et MySQL. Ces deux systèmes sont d'importants systèmes de gestion de bases de données relationnelles open source qui sont largement utilisés dans différentes applications.
PostgreSQL est né du projet POSTGRES à Berkeley en 1986, qui visait à faire progresser les systèmes de gestion de bases de données grâce à des recherches universitaires rigoureuses et à des normes SQL strictes. Cet arrière-plan fournit à PostgreSQL une base théorique solide axée sur la cohérence des données, ce qui le rend idéal pour les requêtes complexes et les types de données avancés. Sa conception met l'accent sur la stabilité à long terme, l'évolutivité et l'innovation axée sur la communauté.
En revanche, MySQL a été créé en 1995 par Michael Widenius et David Axmark, en privilégiant l'aspect pratique et la facilité d'utilisation pour répondre aux besoins des applications Internet en développement rapide. Il simplifie la gestion des bases de données et améliore les performances, devenant rapidement le choix préféré des développeurs Web lors du boom d'Internet. L'accent de MySQL a toujours été mis sur les performances et la facilité de déploiement.
La fonctionnalité notable de MySQL est sa prise en charge de plusieurs moteurs de base de données, permettant aux utilisateurs de choisir la meilleure méthode de stockage pour leurs besoins. Depuis la version 5.5, InnoDB est le moteur par défaut, prenant en charge les transactions et le verrouillage au niveau des lignes pour une concurrence élevée et une cohérence des données. MyISAM, tout en offrant de meilleures performances de lecture, ne prend pas en charge les transactions et convient aux scénarios de lecture intensive. MySQL fournit également des moteurs tels que Memory et Archive pour des cas d'utilisation spécifiques.
PostgreSQL, en revanche, utilise un moteur principal unifié, garantissant la cohérence et l'interopérabilité de toutes les fonctionnalités. Cette conception prend en charge les requêtes complexes, la gestion des transactions et les types de données avancés tout en simplifiant la maintenance. Bien que moins flexible que MySQL dans certains cas, la flexibilité et l'évolutivité internes de PostgreSQL sont améliorées par des fonctionnalités telles que le partitionnement et l'optimisation des requêtes.
Une analyse comparative révèle des différences et des similitudes dans des domaines tels que la prise en charge des types de tableaux, la gestion JSON, la gestion des transactions, les tables temporaires, les fonctions de fenêtre, les requêtes récursives, la richesse des types de données, les contraintes de valeur par défaut et la sensibilité à la casse :
SQL Syntax/Feature | PostgreSQL | MySQL | Description |
---|---|---|---|
Array Types | Supported | Not directly supported | PostgreSQL allows direct definition of array type fields. MySQL simulates arrays using strings or other indirect methods. |
JSON Support | Powerful | More basic | PostgreSQL has advanced JSON support with indexing and optimized queries. MySQL’s JSON support has improved in recent versions but remains simpler. |
Transaction Handling | Fully ACID | Default auto-commit | PostgreSQL pulls off full ACID compliance by default, ideal for high-consistency scenarios. MySQL defaults to auto-commit for each statement but can be configured for transaction handling. |
Temporary Tables | Session/Global Scope | Session Only | PostgreSQL allows both session-level and global temporary tables, while MySQL supports only session-level ones. |
Window Functions | Supported | Supported since later versions | PostgreSQL has long supported window functions; MySQL added full support in more recent versions. |
CTE (Common Table Expressions) | Supported | Supported | Both support CTE, but advanced usages or performance may vary. |
Recursive Queries | Supported | Supported since version 8.0 | PostgreSQL has supported recursive queries for a while, while MySQL started in version 8.0. |
Data Types | More varied (like ARRAY, HSTORE, GIS types) | Basic types are comprehensive | PostgreSQL supports more specialized data types, while MySQL has a good set of basic types but not as diverse as PostgreSQL. |
Default Value Constraints | Supports any expression | Has many limitations | PostgreSQL allows defaults to be any expression, whereas MySQL’s defaults are usually constants. |
Case Sensitivity | Configurable | Defaults to case-insensitive | PostgreSQL can configure case sensitivity at the database or column level, while MySQL defaults to case-insensitive unless using binary collation. |
Remarque : Au fil du temps, les deux systèmes sont continuellement mis à jour et la prise en charge et les performances de fonctionnalités spécifiques peuvent changer. Il est préférable de consulter la dernière documentation officielle ou les notes de version lors du choix d'une base de données.
Feature/Database | PostgreSQL | MySQL |
---|---|---|
Advanced Data Types | Supports arrays, JSONB, hstore, etc., for complex data structures. | Supports JSON (enhanced in newer versions), but doesn't natively support arrays or hstore, needing indirect methods. |
Window Functions | Early support for window functions, suitable for a variety of complex data analytics scenarios. | Added window functions in newer versions, progressively improving functionality but might lag in maturity and community resources. |
Transaction Isolation Levels | Supports READ UNCOMMITTED, READ COMMITTED, REPEATABLE READ, SERIALIZABLE, fully compliant with SQL standards. | Also supports these four isolation levels, but defaults to REPEATABLE READ and implements them via different storage engines (like InnoDB). |
MVCC Implementation | Strong MVCC mechanism maintains multiple versions for each row, allowing for lock-free reads to enhance concurrency. | InnoDB uses MVCC via Undo Logs to maintain transaction views, optimizing read and write concurrency with its own locking strategies. |
Locking Mechanism | Supports row-level locking combined with multi-version concurrency control, reducing lock contention and improving concurrency efficiency. | InnoDB supports row-level locking; MyISAM and other engines use table locks. Row-level locking improves concurrency but can be influenced by locking strategies and transaction designs. |
Feature/Database | PostgreSQL | MySQL |
---|---|---|
Benchmarking and Workload | - Excels in complex queries and joins, thanks to rich indexing types and an optimizer. - Good balance for write-heavy and mixed workloads. |
- Performs excellently in read-heavy scenarios, especially simple SELECT queries. - InnoDB engine optimizes read speed and handles concurrency well. |
Scalability Strategy | - Supports partitioning for large tables to optimize query performance. - Parallel querying enhances large data processing capabilities. - Connection pooling management boosts concurrent processing. |
- Achieves scalability via third-party tools (like PgPool-II, Patroni) for high availability and extensibility. - Sharding is common for horizontally scaling, ideal for large data distribution. - Offers replication (master-slave), group replication for redundancy and separating reads and writes. |
Horizontal Scalability | - Native support is limited but can implement complex distributed deployments with third-party tools. - Citus extension enables real distributed SQL processing. |
- Has more mature sharding solutions and clustering technologies, making horizontal scalability more flexible, especially for large internet applications. |
Feature/Database | PostgreSQL | MySQL |
---|---|---|
Benchmarking and Workload | - With a powerful query optimizer and various indexing types, excels in complex query handling and analysis. - Balanced reading and writing, suitable for applications needing high-performance writing and complex analysis. - Excels in read-heavy contexts, particularly in simple SELECT queries, suited for web browsing and content distribution scenarios. - Optimizes read performance through read-write separation and caching strategies. |
- Specializes in read-heavy operations for simple SELECT queries, perfect for content management systems and e-commerce platforms, ensuring optimized reading performance. - MySQL supports InnoDB optimizations for read speed and concurrency handling. |
Scalability Solutions | - Partitions support range, list, hash, and more, boosting large table query efficiency. - Automatically leverages multi-core CPUs for parallel querying, enhancing data retrieval speed. - 内置和第三方连接池管理优化资源使用和响应时间。 - Using extensions like Citus for distributed processing. - Sharding, either manual or automated, disperses storage and processes large datasets to improve read and write performance. - Replication mechanisms (master-slave, group) enhance data availability and reading scalability. |
- InnoDB Cluster provides integrated high availability and scalability solutions that simplify cluster management. |
Feature/Database | PostgreSQL | MySQL |
---|---|---|
User Permission Management | - Fine-grained permission control with role and privilege inheritance, making it easier to manage complex permission structures. - Supports row-level security (RLS) for custom access control rules. - Provides a detailed user and permissions management system, with controls down to the database and table level. |
- Doesn't natively support row-level security but can implement it through application logic. |
Encryption Features | - Supports SSL/TLS encrypted connections to secure data transmission. - Has field-level encryption plugins to enhance security when data is at rest. - Transparent Data Encryption (TDE) options can be implemented through third-party extensions. |
- Built-in SSL/TLS support protects network communications. - InnoDB storage engine supports table space encryption to secure data files. - MySQL Enterprise Edition offers more advanced encryption options. |
Compliance Certification | - Complies with multiple security standards, including FIPS 140-2 and Common Criteria. - Supports data protection regulations like GDPR, but specific compliance measures need to be tailored to the environment. |
- Holds several international security certifications like PCI DSS and ISO 27001. - Supports SSL/TLS and TDE, aiding in compliance with regulations like HIPAA and GDPR. - MySQL Enterprise Edition provides enhanced auditing and security functions to strengthen compliance. |
Database | Suitable Scenarios |
---|---|
PostgreSQL | - Data analytics and business intelligence: Strong capabilities for complex queries, window functions, and geospatial data processing. - High compliance industries like finance and healthcare: Robust security and compliance features. - Complex application development: Supports advanced data types and multi-version concurrency, ideal for transaction-heavy applications. |
MySQL | - Web applications and startups: Lightweight, easy to deploy, rich community resources, quick development cycles. - Read-heavy services: Such as content management systems and e-commerce platforms with optimized read performance. - Cloud-native environments: Deep integration with various cloud providers, suited for quickly scalable internet services. |
Decision Factor | Considerations | PostgreSQL Tendency | MySQL Tendency |
---|---|---|---|
Data Scale and Complexity | Volume of data, query complexity | Large datasets, complex queries, multi-dimensional analysis | Small to medium datasets, simple queries |
Transaction Processing Needs | Complexity and consistency of transactions | High-concurrency transactions, strict ACID requirements | Simple transaction handling, read/write separation scenarios |
Budget and Costs | Software licensing, operational costs | Open-source and free, but may require more professional support | Open-source and low cloud service costs |
Team Familiarity and Skills | Technical stack match, learning curve | Requires strong SQL skills, suited for experienced teams | Friendlier for beginners, lower learning curve |
Lors de la sélection d’une base de données, il n’existe pas de solution universelle. Concentrez-vous plutôt sur ce qui correspond le mieux à vos besoins. Tout en pesant ces facteurs, envisagez d'exécuter une preuve de concept (POC) à petite échelle pour tester les performances de la base de données sous des charges de travail spécifiques avant de prendre votre décision finale. De plus, les deux systèmes de bases de données s'améliorent continuellement et introduisent de nouvelles fonctionnalités, il est donc essentiel de rester à jour avec les derniers développements pour faire des choix éclairés.
Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!