Getting Started with Streamlit: A Beginner's Guide
Code can be found here: GitHub - jamesbmour/blog_tutorials:
Video version of blog can be found here: https://youtu.be/EQcqNW7Nw7M
Introduction
Streamlit is an open-source app framework that allows you to create beautiful, interactive web applications with minimal effort. If you’re a data scientist, machine learning engineer, or anyone working with data, Streamlit is the perfect tool to turn your Python scripts into interactive apps quickly. In this tutorial, we will dive into the basics of Streamlit by exploring some of its powerful features, such as st.write(), magic commands, and text elements.
Let’s get started by building a simple app to demonstrate these functionalities!
Setting Up Your Streamlit Environment
Before we jump into the code, make sure you have Streamlit installed. If you haven't installed it yet, you can do so with the following command:
pip install streamlit
Now, let’s start coding our first Streamlit app.
Building Your First Streamlit App
1. Adding a Title to Your App
Streamlit makes it incredibly easy to add titles and headings to your app. The st.title() function allows you to display a large title at the top of your application, which serves as the main heading.
import streamlit as st st.title("Introduction to Streamlit: Part 1")
This will display a large, bold title at the top of your app.
Streamlit Write Elements
Using st.write() for Versatile Output
The st.write() function is one of the most versatile functions in Streamlit. You can use it to display almost anything, including text, data frames, charts, and more—all with a single line of code.
Displaying a DataFrame
Let's start by displaying a simple DataFrame using st.write().
import pandas as pd df = pd.DataFrame({ "Column 1": [1, 2, 3, 4], "Column 2": [10, 20, 30, 40] }) st.write("DataFrame using st.write() function") st.write(df)
This code creates a DataFrame with two columns and displays it directly in your app. The beauty of st.write() is that it automatically formats the DataFrame into a neat table, complete with scroll bars if needed.
Displaying Markdown Text
Another cool feature of st.write() is its ability to render Markdown text. This allows you to add formatted text, such as headers, subheaders, and paragraphs, with ease.
markdown_txt = ( "### This is a Markdown Header\\n" "#### This is a Markdown Subheader\\n" "This is a Markdown paragraph.\\n" ) st.write(markdown_txt)
With just a few lines of code, you can add rich text to your app.
Streaming Data with st.write_stream()
Streamlit also allows you to stream data to your app in real-time using the st.write_stream() function. This is particularly useful for displaying data that updates over time, such as sensor readings or live analytics.
import time st.write("## Streaming Data using st.write_stream() function") stream_btn = st.button("Click Button to Stream Data") TEXT = """ # Stream a generator, iterable, or stream-like sequence to the app. """ def stream_data(txt="Hello, World!"): for word in txt.split(" "): yield word + " " time.sleep(0.01) if stream_btn: st.write_stream(stream_data(TEXT))
In this example, when the button is clicked, the app will start streaming data word by word from the TEXT string, simulating real-time data updates.
Streamlit Text Elements
In addition to data streaming, Streamlit provides several text elements to enhance the presentation of your app.
Headers and Subheaders
You can easily add headers and subheaders using st.header() and st.subheader():
st.header("This is a Header") st.subheader("This is a Subheader")
These functions help structure your content, making your app more organized and visually appealing.
Captions
Captions are useful for adding small notes or explanations. You can add them using st.caption():
st.caption("This is a caption")
Displaying Code
If you want to display code snippets in your app, you can use st.code():
code_txt = """ import pandas as pd import streamlit as st st.title("Streamlit Tutorials") for i in range(10): st.write(i) """ st.code(code_txt)
This will display the code in a nicely formatted, syntax-highlighted block.
Displaying Mathematical Expressions
For those who need to include mathematical equations, Streamlit supports LaTeX:
st.latex(r"e = mc^2") st.latex(r"\\int_a^b x^2 dx")
These commands will render LaTeX equations directly in your app.
Adding Dividers
To separate different sections of your app, you can use st.divider():
st.write("This is some text below the divider.") st.divider() st.write("This is some other text below the divider.")
Dividers add a horizontal line between sections, helping to break up the content visually.
Conclusion
In this introductory tutorial, we covered the basics of Streamlit, including how to use st.write() to display data and text, and how to stream data using st.write_stream(). We also explored various text elements to enhance the structure and readability of your app.
Streamlit makes it incredibly easy to create interactive web applications with just a few lines of code. Whether you're building dashboards, data exploration tools, or any other data-driven app, Streamlit provides the tools you need to get started quickly.
In the next tutorial, we’ll dive deeper into widgets and interactivity features in Streamlit. Stay tuned!
Si vous avez trouvé ce tutoriel utile, n'oubliez pas de le partager et de vous abonner pour plus de contenu. Rendez-vous dans le prochain post !
Si vous souhaitez soutenir mon écriture ou m'offrir une bière : https://buymeacoffee.com/bmours
Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!

PythonisBothPuledandandinterpreted.WhenyourUnapythonscript, itTISTISTROMPILEDInTOBYTECODODE, qui sehisthenexEcutedByThepythonVirtualMachine (PVM) .ThishybridAproachallowsForPlatform-indépendantcodebutCanbeleslowerThannatIveMineCodeeExExExecution.

Python n'est pas strictement en ligne ligne par ligne, mais est optimisée et conditionnelle en fonction du mécanisme d'interprète. L'interprète convertit le code en bytecode, exécuté par le PVM, et peut précompiler les expressions constantes ou optimiser les boucles. Comprendre ces mécanismes aide à optimiser le code et à améliorer l'efficacité.

Il existe de nombreuses méthodes pour connecter deux listes dans Python: 1. Utilisez des opérateurs, qui sont simples mais inefficaces dans les grandes listes; 2. Utiliser la méthode Extende, qui est efficace mais modifiera la liste d'origine; 3. Utilisez l'opérateur = qui est à la fois efficace et lisible; 4. Utilisez la fonction itertools.chain, qui est efficace de la mémoire mais nécessite une importation supplémentaire; 5. Utilisez l'analyse de la liste, qui est élégante mais peut être trop complexe. La méthode de sélection doit être basée sur le contexte et les exigences du code.

Il existe de nombreuses façons de fusionner les listes Python: 1. Utilisez des opérateurs, qui sont simples mais pas efficaces par la mémoire pour les grandes listes; 2. Utiliser la méthode Extende, qui est efficace mais modifiera la liste d'origine; 3. Utilisez itertools.chain, qui convient aux grands ensembles de données; 4. Utiliser * l'opérateur, fusionner les listes de petites à moyennes dans une ligne de code; 5. Utilisez Numpy.concatenate, qui convient aux grands ensembles de données et scénarios avec des exigences de performance élevées; 6. Utilisez la méthode d'ajout, qui convient aux petites listes mais est inefficace. Lors de la sélection d'une méthode, vous devez considérer la taille de la liste et les scénarios d'application.

CompiledLanguagesOffersPeedandSecurity, tandis que l'interprété des langues de la durée de la valeur et de la sport.1) Compilé LanguagesLikec ArefasterandSecureButhAvelongerDevelopmentCyclesandPlatformDependency.2)

Dans Python, une boucle pour une boucle est utilisée pour traverser les objets itérable, et une boucle WHE est utilisée pour effectuer des opérations à plusieurs reprises lorsque la condition est satisfaite. 1) Pour l'exemple de boucle: traversez la liste et imprimez les éléments. 2) Place de Loop: Devinez le jeu numérique jusqu'à ce que vous le devassiez correctement. Les principes du cycle de maîtrise et les techniques d'optimisation peuvent améliorer l'efficacité et la fiabilité du code.

Pour concaténer une liste dans une chaîne, l'utilisation de la méthode join () dans Python est le meilleur choix. 1) Utilisez la méthode join () pour concaténer les éléments de liste en une chaîne, telle que '' .join (my_list). 2) Pour une liste contenant des numéros, convertissez la carte (STR, numéros) en une chaîne avant de concaténer. 3) Vous pouvez utiliser des expressions de générateur pour le formatage complexe, telles que ','. JOIN (f '({fruit})' forfruitInfruits). 4) Lors du traitement des types de données mixtes, utilisez MAP (STR, mixtes_list) pour vous assurer que tous les éléments peuvent être convertis en chaînes. 5) Pour les grandes listes, utilisez '' .join (grand_li

Pythonusesahybridapproach, combinantcompilationToByteDodeAnd Intrepretation.1) CodeSompiledToplatForment-indépendantBytecode.2) ByteCodeisInterpretedByThepyThonVirtualmachine, améliorant la performance et la portabilité.


Outils d'IA chauds

Undresser.AI Undress
Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover
Outil d'IA en ligne pour supprimer les vêtements des photos.

Undress AI Tool
Images de déshabillage gratuites

Clothoff.io
Dissolvant de vêtements AI

Video Face Swap
Échangez les visages dans n'importe quelle vidéo sans effort grâce à notre outil d'échange de visage AI entièrement gratuit !

Article chaud

Outils chauds

PhpStorm version Mac
Le dernier (2018.2.1) outil de développement intégré PHP professionnel

SublimeText3 version chinoise
Version chinoise, très simple à utiliser

Envoyer Studio 13.0.1
Puissant environnement de développement intégré PHP

Listes Sec
SecLists est le compagnon ultime du testeur de sécurité. Il s'agit d'une collection de différents types de listes fréquemment utilisées lors des évaluations de sécurité, le tout en un seul endroit. SecLists contribue à rendre les tests de sécurité plus efficaces et productifs en fournissant facilement toutes les listes dont un testeur de sécurité pourrait avoir besoin. Les types de listes incluent les noms d'utilisateur, les mots de passe, les URL, les charges utiles floues, les modèles de données sensibles, les shells Web, etc. Le testeur peut simplement extraire ce référentiel sur une nouvelle machine de test et il aura accès à tous les types de listes dont il a besoin.

Télécharger la version Mac de l'éditeur Atom
L'éditeur open source le plus populaire
