


1. Introduction et objectifs
Bienvenue dans le cinquième volet de notre série sur la mise en œuvre d'un système sophistiqué de traitement des commandes ! Dans nos articles précédents, nous avons tout couvert, de la configuration de l'architecture de base à la mise en œuvre de flux de travail avancés et d'une surveillance complète. Aujourd'hui, nous plongeons dans le monde du traçage et de la journalisation distribués, deux composants cruciaux pour maintenir l'observabilité dans une architecture de microservices.
Récapitulatif des articles précédents
- Dans la première partie, nous avons mis en place la structure de notre projet et implémenté une API CRUD de base.
- La deuxième partie s'est concentrée sur l'expansion de notre utilisation de Temporal pour les flux de travail complexes.
- Dans la troisième partie, nous avons abordé les opérations avancées de base de données, notamment l'optimisation et le partitionnement.
- La partie 4 couvrait la surveillance et les alertes complètes à l'aide de Prometheus et Grafana.
Importance du traçage et de la journalisation distribués dans l'architecture de microservices
Dans une architecture de microservices, une requête d'utilisateur unique s'étend souvent sur plusieurs services. Cette nature distribuée rend difficile la compréhension du flux des demandes et le diagnostic des problèmes lorsqu'ils surviennent. Le traçage distribué et la journalisation centralisée répondent à ces défis en fournissant :
- Visibilité de bout en bout du flux de demandes entre les services
- Aperçu détaillé des performances des composants individuels
- La possibilité de corréler les événements entre différents services
- Une vue centralisée du comportement et de l'état du système
Présentation d'OpenTelemetry et de la pile ELK
Pour mettre en œuvre le traçage et la journalisation distribués, nous utiliserons deux ensembles d'outils puissants :
-
OpenTelemetry : Un cadre d'observabilité pour les logiciels cloud natifs qui fournit un ensemble unique d'API, de bibliothèques, d'agents et de services de collecteur pour capturer les traces et les métriques distribuées de votre application.
ELK Stack : une collection de trois produits open source - Elasticsearch, Logstash et Kibana - d'Elastic, qui fournissent ensemble une plate-forme robuste pour l'ingestion, le stockage et la visualisation des journaux.
Objectifs pour cette partie de la série
À la fin de cet article, vous pourrez :
- Implémentez le traçage distribué sur vos microservices à l'aide d'OpenTelemetry
- Configurer la journalisation centralisée à l'aide de la pile ELK
- Corrélez les journaux, les traces et les métriques pour une vue unifiée du comportement du système
- Mettre en œuvre des stratégies efficaces d'agrégation et d'analyse des journaux
- Appliquer les bonnes pratiques de connexion dans une architecture de microservices
Plongeons-nous !
2. Contexte théorique et concepts
Avant de commencer la mise en œuvre, passons en revue quelques concepts clés qui seront cruciaux pour notre configuration de traçage et de journalisation distribués.
Introduction au traçage distribué
Le traçage distribué est une méthode de suivi d'une demande lorsqu'elle transite par divers services dans un système distribué. Il fournit un moyen de comprendre le cycle de vie complet d'une demande, notamment :
- Le chemin emprunté par une demande à travers le système
- Les services et ressources avec lesquels il interagit
- Le temps passé dans chaque service
Une trace se compose généralement d'une ou plusieurs étendues. Une travée représente une unité de travail ou d’opération. Il suit les opérations spécifiques effectuées par une requête, en enregistrant le début et la fin de l'opération, ainsi que d'autres données.
Comprendre le projet OpenTelemetry et ses composants
OpenTelemetry est un framework d'observabilité pour les logiciels cloud natifs. Il fournit un ensemble unique d'API, de bibliothèques, d'agents et de services de collecteur pour capturer les traces et les métriques distribuées de votre application. Les composants clés incluent :
- API : fournit les types de données et les opérations de base pour le traçage et les métriques.
- SDK : implémente l'API, fournissant un moyen de configurer et de personnaliser le comportement.
- Bibliothèques d'instruments : Fournit une instrumentation automatique pour les frameworks et bibliothèques populaires.
- Collector : Reçoit, traite et exporte les données de télémétrie.
Présentation des meilleures pratiques de journalisation dans les systèmes distribués
Une journalisation efficace dans les systèmes distribués nécessite un examen attentif :
- Journalisation structurée : utilisez un format cohérent et structuré (par exemple, JSON) pour les entrées de journal afin de faciliter l'analyse et l'analyse.
- ID de corrélation : incluez un identifiant unique dans les entrées de journal pour suivre les demandes entre les services.
- Informations contextuelles : incluez le contexte pertinent (par exemple, ID utilisateur, ID de commande) dans les entrées du journal.
- Niveaux de journalisation : utilisez les niveaux de journalisation appropriés (DEBUG, INFO, WARN, ERROR) de manière cohérente dans tous les services.
- Journalisation centralisée : regroupez les journaux de tous les services dans un emplacement central pour une analyse plus facile.
Introduction à la pile ELK (Elasticsearch, Logstash, Kibana)
La pile ELK est un choix populaire pour la gestion des journaux :
- Elasticsearch : Un moteur de recherche et d'analyse distribué et RESTful capable de gérer de gros volumes de données.
- Logstash : un pipeline de traitement de données côté serveur qui ingère des données provenant de plusieurs sources, les transforme et les envoie à Elasticsearch.
- Kibana : une couche de visualisation qui fonctionne sur Elasticsearch, fournissant une interface utilisateur pour rechercher, visualiser et interagir avec les données.
Concepts d'agrégation et d'analyse de journaux
L'agrégation de journaux implique la collecte de données de journaux provenant de diverses sources et leur stockage dans un emplacement centralisé. Cela permet de :
- Recherche et analyse plus faciles des journaux sur plusieurs services
- Corrélation des événements entre différents composants du système
- Stockage et archivage à long terme des données de journal
L'analyse des journaux implique l'extraction d'informations significatives à partir des données de journaux, qui peuvent inclure :
- Identifier les modèles et les tendances
- Détection des anomalies et des erreurs
- Surveillance de la santé et des performances du système
- Prise en charge de l'analyse des causes profondes lors de la réponse aux incidents
En gardant ces concepts à l'esprit, passons à la mise en œuvre du traçage distribué dans notre système de traitement des commandes.
3. Implémentation du traçage distribué avec OpenTelemetry
Commençons par implémenter le traçage distribué dans notre système de traitement des commandes à l'aide d'OpenTelemetry.
Configuration d'OpenTelemetry dans nos services Go
Tout d'abord, nous devons ajouter OpenTelemetry à nos services Go. Ajoutez les dépendances suivantes à votre fichier go.mod :
require ( go.opentelemetry.io/otel v1.7.0 go.opentelemetry.io/otel/exporters/jaeger v1.7.0 go.opentelemetry.io/otel/sdk v1.7.0 go.opentelemetry.io/otel/trace v1.7.0 )
Ensuite, configurons un fournisseur de traceur dans notre fonction principale :
package main import ( "log" "go.opentelemetry.io/otel" "go.opentelemetry.io/otel/attribute" "go.opentelemetry.io/otel/exporters/jaeger" "go.opentelemetry.io/otel/sdk/resource" tracesdk "go.opentelemetry.io/otel/sdk/trace" semconv "go.opentelemetry.io/otel/semconv/v1.4.0" ) func initTracer() func() { exporter, err := jaeger.New(jaeger.WithCollectorEndpoint(jaeger.WithEndpoint("http://jaeger:14268/api/traces"))) if err != nil { log.Fatal(err) } tp := tracesdk.NewTracerProvider( tracesdk.WithBatcher(exporter), tracesdk.WithResource(resource.NewWithAttributes( semconv.SchemaURL, semconv.ServiceNameKey.String("order-processing-service"), attribute.String("environment", "production"), )), ) otel.SetTracerProvider(tp) return func() { if err := tp.Shutdown(context.Background()); err != nil { log.Printf("Error shutting down tracer provider: %v", err) } } } func main() { cleanup := initTracer() defer cleanup() // Rest of your main function... }
Cela configure un fournisseur de traceur qui exporte les traces vers Jaeger, un backend de traçage distribué populaire.
Instrumenter notre workflow de traitement des commandes avec des traces
Maintenant, ajoutons le traçage à notre flux de traitement des commandes. Nous allons commencer par la fonction CreateOrder :
import ( "context" "go.opentelemetry.io/otel" "go.opentelemetry.io/otel/attribute" "go.opentelemetry.io/otel/trace" ) func CreateOrder(ctx context.Context, order Order) error { tr := otel.Tracer("order-processing") ctx, span := tr.Start(ctx, "CreateOrder") defer span.End() span.SetAttributes(attribute.Int64("order.id", order.ID)) span.SetAttributes(attribute.Float64("order.total", order.Total)) // Validate order if err := validateOrder(ctx, order); err != nil { span.RecordError(err) span.SetStatus(codes.Error, "Order validation failed") return err } // Process payment if err := processPayment(ctx, order); err != nil { span.RecordError(err) span.SetStatus(codes.Error, "Payment processing failed") return err } // Update inventory if err := updateInventory(ctx, order); err != nil { span.RecordError(err) span.SetStatus(codes.Error, "Inventory update failed") return err } span.SetStatus(codes.Ok, "Order created successfully") return nil }
Cela crée un nouveau span pour la fonction CreateOrder et ajoute des attributs pertinents. Il crée également des périodes enfants pour chaque étape majeure du processus.
Propagation du contexte au-delà des limites des services
Lorsque nous effectuons des appels vers d'autres services, nous devons propager le contexte de trace. Voici un exemple de la façon de procéder avec un client HTTP :
import ( "net/http" "go.opentelemetry.io/contrib/instrumentation/net/http/otelhttp" ) func callExternalService(ctx context.Context, url string) error { client := http.Client{Transport: otelhttp.NewTransport(http.DefaultTransport)} req, err := http.NewRequestWithContext(ctx, "GET", url, nil) if err != nil { return err } _, err = client.Do(req) return err }
Ceci utilise le package otelhttp pour propager automatiquement le contexte de trace dans les en-têtes HTTP.
Gestion des opérations asynchrones et des tâches en arrière-plan
Pour les opérations asynchrones, nous devons nous assurer que nous transmettons correctement le contexte de trace. Voici un exemple utilisant un pool de nœuds de calcul :
func processOrderAsync(ctx context.Context, order Order) { tr := otel.Tracer("order-processing") ctx, span := tr.Start(ctx, "processOrderAsync") defer span.End() workerPool <p>Cela crée une nouvelle étendue pour l'opération asynchrone et la transmet à la fonction de travail.</p> <h3> Intégration d'OpenTelemetry avec des flux de travail temporels </h3> <p>Pour intégrer OpenTelemetry aux workflows temporels, nous pouvons utiliser le package go.opentelemetry.io/contrib/instrumentation/go.temporal.io/temporal/oteltemporalgrpc :<br> </p> <pre class="brush:php;toolbar:false">import ( "go.temporal.io/sdk/client" "go.temporal.io/sdk/worker" "go.opentelemetry.io/contrib/instrumentation/go.temporal.io/temporal/oteltemporalgrpc" ) func initTemporalClient() (client.Client, error) { return client.NewClient(client.Options{ HostPort: "temporal:7233", ConnectionOptions: client.ConnectionOptions{ DialOptions: []grpc.DialOption{ grpc.WithUnaryInterceptor(oteltemporalgrpc.UnaryClientInterceptor()), grpc.WithStreamInterceptor(oteltemporalgrpc.StreamClientInterceptor()), }, }, }) } func initTemporalWorker(c client.Client, taskQueue string) worker.Worker { w := worker.New(c, taskQueue, worker.Options{ WorkerInterceptors: []worker.WorkerInterceptor{ oteltemporalgrpc.WorkerInterceptor(), }, }) return w }
Cela configure les clients et les travailleurs temporels avec l'instrumentation OpenTelemetry.
Exportation de traces vers un backend (par exemple, Jaeger)
Nous avons déjà configuré Jaeger comme backend de trace dans la fonction initTracer. Pour visualiser nos traces, nous devons ajouter Jaeger à notre docker-compose.yml :
services: # ... other services ... jaeger: image: jaegertracing/all-in-one:1.35 ports: - "16686:16686" - "14268:14268" environment: - COLLECTOR_OTLP_ENABLED=true
Vous pouvez désormais accéder à l'interface utilisateur Jaeger sur http://localhost:16686 pour visualiser et analyser vos traces.
Dans la section suivante, nous configurerons la journalisation centralisée à l'aide de la pile ELK pour compléter notre configuration de traçage distribué.
4. Configuration de la journalisation centralisée avec la pile ELK
Maintenant que nous avons mis en place le traçage distribué, configurons la journalisation centralisée à l'aide de la pile ELK (Elasticsearch, Logstash, Kibana).
Installation et configuration d'Elasticsearch
Tout d'abord, ajoutons Elasticsearch à notre docker-compose.yml :
services: # ... other services ... elasticsearch: image: docker.elastic.co/elasticsearch/elasticsearch:7.14.0 environment: - discovery.type=single-node - "ES_JAVA_OPTS=-Xms512m -Xmx512m" ports: - "9200:9200" volumes: - elasticsearch_data:/usr/share/elasticsearch/data volumes: elasticsearch_data: driver: local
Cela configure une instance Elasticsearch à nœud unique à des fins de développement.
Setting up Logstash for Log Ingestion and Processing
Next, let’s add Logstash to our docker-compose.yml:
services: # ... other services ... logstash: image: docker.elastic.co/logstash/logstash:7.14.0 volumes: - ./logstash/pipeline:/usr/share/logstash/pipeline ports: - "5000:5000/tcp" - "5000:5000/udp" - "9600:9600" depends_on: - elasticsearch
Create a Logstash pipeline configuration file at ./logstash/pipeline/logstash.conf:
input { tcp { port => 5000 codec => json } } filter { if [trace_id] { mutate { add_field => { "[@metadata][trace_id]" => "%{trace_id}" } } } } output { elasticsearch { hosts => ["elasticsearch:9200"] index => "order-processing-logs-%{+YYYY.MM.dd}" } }
This configuration sets up Logstash to receive JSON logs over TCP, process them, and forward them to Elasticsearch.
Configuring Kibana for Log Visualization
Now, let’s add Kibana to our docker-compose.yml:
services: # ... other services ... kibana: image: docker.elastic.co/kibana/kibana:7.14.0 ports: - "5601:5601" environment: ELASTICSEARCH_URL: http://elasticsearch:9200 ELASTICSEARCH_HOSTS: '["http://elasticsearch:9200"]' depends_on: - elasticsearch
You can access the Kibana UI at http://localhost:5601 once it’s up and running.
Implementing Structured Logging in our Go Services
To send structured logs to Logstash, we’ll use the logrus library. First, add it to your go.mod:
go get github.com/sirupsen/logrus
Now, let’s set up a logger in our main function:
import ( "github.com/sirupsen/logrus" "gopkg.in/sohlich/elogrus.v7" ) func initLogger() *logrus.Logger { log := logrus.New() log.SetFormatter(&logrus.JSONFormatter{}) hook, err := elogrus.NewElasticHook("elasticsearch:9200", "warning", "order-processing-logs") if err != nil { log.Fatalf("Failed to create Elasticsearch hook: %v", err) } log.AddHook(hook) return log } func main() { log := initLogger() // Rest of your main function... }
This sets up a JSON formatter for our logs and adds an Elasticsearch hook to send logs directly to Elasticsearch.
Sending Logs from our Services to the ELK Stack
Now, let’s update our CreateOrder function to use structured logging:
func CreateOrder(ctx context.Context, order Order) error { tr := otel.Tracer("order-processing") ctx, span := tr.Start(ctx, "CreateOrder") defer span.End() logger := logrus.WithFields(logrus.Fields{ "order_id": order.ID, "trace_id": span.SpanContext().TraceID().String(), }) logger.Info("Starting order creation") // Validate order if err := validateOrder(ctx, order); err != nil { logger.WithError(err).Error("Order validation failed") span.RecordError(err) span.SetStatus(codes.Error, "Order validation failed") return err } // Process payment if err := processPayment(ctx, order); err != nil { logger.WithError(err).Error("Payment processing failed") span.RecordError(err) span.SetStatus(codes.Error, "Payment processing failed") return err } // Update inventory if err := updateInventory(ctx, order); err != nil { logger.WithError(err).Error("Inventory update failed") span.RecordError(err) span.SetStatus(codes.Error, "Inventory update failed") return err } logger.Info("Order created successfully") span.SetStatus(codes.Ok, "Order created successfully") return nil }
This code logs each step of the order creation process, including any errors that occur. It also includes the trace ID in each log entry, which will be crucial for correlating logs with traces.
5. Correlating Logs, Traces, and Metrics
Now that we have both distributed tracing and centralized logging set up, let’s explore how to correlate this information for a unified view of system behavior.
Implementing Correlation IDs Across Logs and Traces
We’ve already included the trace ID in our log entries. To make this correlation even more powerful, we can add a custom field to our spans that includes the log index:
span.SetAttributes(attribute.String("log.index", "order-processing-logs-"+time.Now().Format("2006.01.02")))
This allows us to easily jump from a span in Jaeger to the corresponding logs in Kibana.
Adding Trace IDs to Log Entries
We’ve already added trace IDs to our log entries in the previous section. This allows us to search for all log entries related to a particular trace in Kibana.
Linking Metrics to Traces Using Exemplars
To link our Prometheus metrics to traces, we can use exemplars. Here’s an example of how to do this:
import ( "github.com/prometheus/client_golang/prometheus" "github.com/prometheus/client_golang/prometheus/promauto" "go.opentelemetry.io/otel/trace" ) var ( orderProcessingDuration = promauto.NewHistogramVec( prometheus.HistogramOpts{ Name: "order_processing_duration_seconds", Help: "Duration of order processing in seconds", Buckets: prometheus.DefBuckets, }, []string{"status"}, ) ) func CreateOrder(ctx context.Context, order Order) error { // ... existing code ... start := time.Now() // ... process order ... duration := time.Since(start) orderProcessingDuration.WithLabelValues("success").Observe(duration.Seconds(), prometheus.Labels{ "trace_id": span.SpanContext().TraceID().String(), }) // ... rest of the function ... }
This adds the trace ID as an exemplar to our order processing duration metric.
Creating a Unified View of System Behavior
With logs, traces, and metrics all correlated, we can create a unified view of our system’s behavior:
- In Grafana, create a dashboard that includes both Prometheus metrics and Elasticsearch logs.
- Use the trace ID to link from a metric to the corresponding trace in Jaeger.
- From Jaeger, use the log index attribute to link to the corresponding logs in Kibana.
This allows you to seamlessly navigate between metrics, traces, and logs, providing a comprehensive view of your system’s behavior and making it easier to debug issues.
6. Log Aggregation and Analysis
With our logs centralized in Elasticsearch, let’s explore some strategies for effective log aggregation and analysis.
Designing Effective Log Aggregation Strategies
- Use Consistent Log Formats : Ensure all services use the same log format (in our case, JSON) with consistent field names.
- Include Relevant Context : Always include relevant context in logs, such as order ID, user ID, and trace ID.
- Use Log Levels Appropriately : Use DEBUG for detailed information, INFO for general information, WARN for potential issues, and ERROR for actual errors.
- Aggregate Logs by Service : Use different Elasticsearch indices or index patterns for different services to allow for easier analysis.
Implementing Log Sampling for High-Volume Services
For high-volume services, logging every event can be prohibitively expensive. Implement log sampling to reduce the volume while still maintaining visibility:
func shouldLog() bool { return rand.Float32() <h3> Creating Kibana Dashboards for Log Analysis </h3> <p>In Kibana, create dashboards that provide insights into your system’s behavior. Some useful visualizations might include:</p> <ol> <li>Number of orders created over time</li> <li>Distribution of order processing times</li> <li>Error rate by service</li> <li>Most common error types</li> </ol> <h3> Implementing Alerting Based on Log Patterns </h3> <p>Use Kibana’s alerting features to set up alerts based on log patterns. For example:</p> <ol> <li>Alert when the error rate exceeds a certain threshold</li> <li>Alert on specific error messages that indicate critical issues</li> <li>Alert when order processing time exceeds a certain duration</li> </ol> <h3> Using Machine Learning for Anomaly Detection in Logs </h3> <p>Elasticsearch provides machine learning capabilities that can be used for anomaly detection in logs. You can set up machine learning jobs in Kibana to detect:</p> <ol> <li>Unusual spikes in error rates</li> <li>Abnormal patterns in order creation</li> <li>Unexpected changes in log volume</li> </ol> <p>These machine learning insights can help you identify issues before they become critical problems.</p> <p>In the next sections, we’ll cover best practices for logging in a microservices architecture and explore some advanced OpenTelemetry techniques.</p> <h2> 7. Best Practices for Logging in a Microservices Architecture </h2> <p>When implementing logging in a microservices architecture, there are several best practices to keep in mind to ensure your logs are useful, manageable, and secure.</p> <h3> Standardizing Log Formats Across Services </h3> <p>Consistency in log formats across all your services is crucial for effective log analysis. In our Go services, we can create a custom logger that enforces a standard format:<br> </p> <pre class="brush:php;toolbar:false">import ( "github.com/sirupsen/logrus" ) type StandardLogger struct { *logrus.Logger ServiceName string } func NewStandardLogger(serviceName string) *StandardLogger { logger := logrus.New() logger.SetFormatter(&logrus.JSONFormatter{ FieldMap: logrus.FieldMap{ logrus.FieldKeyTime: "timestamp", logrus.FieldKeyLevel: "severity", logrus.FieldKeyMsg: "message", }, }) return &StandardLogger{ Logger: logger, ServiceName: serviceName, } } func (l *StandardLogger) WithFields(fields logrus.Fields) *logrus.Entry { return l.Logger.WithFields(logrus.Fields{ "service": l.ServiceName, }).WithFields(fields) }
This logger ensures that all log entries include a “service” field and use consistent field names.
Implementing Contextual Logging
Contextual logging involves including relevant context with each log entry. In a microservices architecture, this often means including a request ID or trace ID that can be used to correlate logs across services:
func CreateOrder(ctx context.Context, logger *StandardLogger, order Order) error { tr := otel.Tracer("order-processing") ctx, span := tr.Start(ctx, "CreateOrder") defer span.End() logger := logger.WithFields(logrus.Fields{ "order_id": order.ID, "trace_id": span.SpanContext().TraceID().String(), }) logger.Info("Starting order creation") // ... rest of the function ... }
Handling Sensitive Information in Logs
It’s crucial to ensure that sensitive information, such as personal data or credentials, is not logged. You can create a custom log hook to redact sensitive information:
type SensitiveDataHook struct{} func (h *SensitiveDataHook) Levels() []logrus.Level { return logrus.AllLevels } func (h *SensitiveDataHook) Fire(entry *logrus.Entry) error { if entry.Data["credit_card"] != nil { entry.Data["credit_card"] = "REDACTED" } return nil } // In your main function: logger.AddHook(&SensitiveDataHook{})
Managing Log Retention and Rotation
In a production environment, you need to manage log retention and rotation to control storage costs and comply with data retention policies. While Elasticsearch can handle this to some extent, you might also want to implement log rotation at the application level:
import ( "gopkg.in/natefinch/lumberjack.v2" ) func initLogger() *logrus.Logger { logger := logrus.New() logger.SetOutput(&lumberjack.Logger{ Filename: "/var/log/myapp.log", MaxSize: 100, // megabytes MaxBackups: 3, MaxAge: 28, //days Compress: true, }) return logger }
Implementing Audit Logging for Compliance Requirements
For certain operations, you may need to maintain an audit trail for compliance reasons. You can create a separate audit logger for this purpose:
type AuditLogger struct { logger *logrus.Logger } func NewAuditLogger() *AuditLogger { logger := logrus.New() logger.SetFormatter(&logrus.JSONFormatter{}) // Set up a separate output for audit logs // This could be a different file, database, or even a separate Elasticsearch index return &AuditLogger{logger: logger} } func (a *AuditLogger) LogAuditEvent(ctx context.Context, event string, details map[string]interface{}) { span := trace.SpanFromContext(ctx) a.logger.WithFields(logrus.Fields{ "event": event, "trace_id": span.SpanContext().TraceID().String(), "details": details, }).Info("Audit event") } // Usage: auditLogger.LogAuditEvent(ctx, "OrderCreated", map[string]interface{}{ "order_id": order.ID, "user_id": order.UserID, })
8. Advanced OpenTelemetry Techniques
Now that we have a solid foundation for distributed tracing, let’s explore some advanced techniques to get even more value from OpenTelemetry.
Implementing Custom Span Attributes and Events
Custom span attributes and events can provide additional context to your traces:
func ProcessPayment(ctx context.Context, order Order) error { _, span := otel.Tracer("payment-service").Start(ctx, "ProcessPayment") defer span.End() span.SetAttributes( attribute.String("payment.method", order.PaymentMethod), attribute.Float64("payment.amount", order.Total), ) // Process payment... if paymentSuccessful { span.AddEvent("PaymentProcessed", trace.WithAttributes( attribute.String("transaction_id", transactionID), )) } else { span.AddEvent("PaymentFailed", trace.WithAttributes( attribute.String("error", "Insufficient funds"), )) } return nil }
Using OpenTelemetry’s Baggage for Cross-Cutting Concerns
Baggage allows you to propagate key-value pairs across service boundaries:
import ( "go.opentelemetry.io/otel/baggage" ) func AddUserInfoToBaggage(ctx context.Context, userID string) context.Context { b, _ := baggage.Parse(fmt.Sprintf("user_id=%s", userID)) return baggage.ContextWithBaggage(ctx, b) } func GetUserIDFromBaggage(ctx context.Context) string { if b := baggage.FromContext(ctx); b != nil { if v := b.Member("user_id"); v.Key() != "" { return v.Value() } } return "" }
Implementing Sampling Strategies for High-Volume Tracing
For high-volume services, tracing every request can be expensive. Implement a sampling strategy to reduce the volume while still maintaining visibility:
import ( "go.opentelemetry.io/otel/sdk/trace" "go.opentelemetry.io/otel/sdk/trace/sampling" ) sampler := sampling.ParentBased( sampling.TraceIDRatioBased(0.1), // Sample 10% of traces ) tp := trace.NewTracerProvider( trace.WithSampler(sampler), // ... other options ... )
Creating Custom OpenTelemetry Exporters
While we’ve been using Jaeger as our tracing backend, you might want to create a custom exporter for a different backend or for special processing:
type CustomExporter struct{} func (e *CustomExporter) ExportSpans(ctx context.Context, spans []trace.ReadOnlySpan) error { for _, span := range spans { // Process or send the span data as needed fmt.Printf("Exporting span: %s\n", span.Name()) } return nil } func (e *CustomExporter) Shutdown(ctx context.Context) error { // Cleanup logic here return nil } // Use the custom exporter: exporter := &CustomExporter{} tp := trace.NewTracerProvider( trace.WithBatcher(exporter), // ... other options ... )
Integrating OpenTelemetry with Existing Monitoring Tools
OpenTelemetry can be integrated with many existing monitoring tools. For example, to send traces to both Jaeger and Zipkin:
jaegerExporter, _ := jaeger.New(jaeger.WithCollectorEndpoint(jaeger.WithEndpoint("http://jaeger:14268/api/traces"))) zipkinExporter, _ := zipkin.New("http://zipkin:9411/api/v2/spans") tp := trace.NewTracerProvider( trace.WithBatcher(jaegerExporter), trace.WithBatcher(zipkinExporter), // ... other options ... )
These advanced techniques will help you get the most out of OpenTelemetry in your order processing system.
In the next sections, we’ll cover performance considerations, testing and validation strategies, and discuss some challenges and considerations when implementing distributed tracing and logging at scale.
9. Performance Considerations
When implementing distributed tracing and logging, it’s crucial to consider the performance impact on your system. Let’s explore some strategies to optimize performance.
Optimizing Logging Performance in High-Throughput Systems
- Use Asynchronous Logging : Implement a buffered, asynchronous logger to minimize the impact on request processing:
type AsyncLogger struct { ch chan *logrus.Entry } func NewAsyncLogger(bufferSize int) *AsyncLogger { logger := &AsyncLogger{ ch: make(chan *logrus.Entry, bufferSize), } go logger.run() return logger } func (l *AsyncLogger) run() { for entry := range l.ch { entry.Logger.Out.Write(entry.Bytes()) } } func (l *AsyncLogger) Log(entry *logrus.Entry) { select { case l.ch <ol> <li> <strong>Log Sampling</strong> : For very high-throughput systems, consider sampling your logs: </li> </ol> <pre class="brush:php;toolbar:false">func (l *AsyncLogger) SampledLog(entry *logrus.Entry, sampleRate float32) { if rand.Float32() <h3> Managing the Performance Impact of Distributed Tracing </h3> <ol> <li> <strong>Use Sampling</strong> : Implement a sampling strategy to reduce the volume of traces: </li> </ol> <pre class="brush:php;toolbar:false">sampler := trace.ParentBased( trace.TraceIDRatioBased(0.1), // Sample 10% of traces ) tp := trace.NewTracerProvider( trace.WithSampler(sampler), // ... other options ... )
- Optimize Span Creation : Only create spans for significant operations to reduce overhead:
func ProcessOrder(ctx context.Context, order Order) error { ctx, span := tracer.Start(ctx, "ProcessOrder") defer span.End() // Don't create a span for this quick operation validateOrder(order) // Create a span for this potentially slow operation ctx, paymentSpan := tracer.Start(ctx, "ProcessPayment") err := processPayment(ctx, order) paymentSpan.End() if err != nil { return err } // ... rest of the function }
Implementing Buffering and Batching for Trace and Log Export
Use the OpenTelemetry SDK’s built-in batching exporter to reduce the number of network calls:
exporter, err := jaeger.New(jaeger.WithCollectorEndpoint(jaeger.WithEndpoint("http://jaeger:14268/api/traces"))) if err != nil { log.Fatalf("Failed to create Jaeger exporter: %v", err) } tp := trace.NewTracerProvider( trace.WithBatcher(exporter, trace.WithMaxExportBatchSize(100), trace.WithBatchTimeout(5 * time.Second), ), // ... other options ... )
Scaling the ELK Stack for Large-Scale Systems
- Use Index Lifecycle Management : Configure Elasticsearch to automatically manage index lifecycle:
PUT _ilm/policy/logs_policy { "policy": { "phases": { "hot": { "actions": { "rollover": { "max_size": "50GB", "max_age": "1d" } } }, "delete": { "min_age": "30d", "actions": { "delete": {} } } } } }
- Implement Elasticsearch Clustering : For large-scale systems, set up Elasticsearch in a multi-node cluster for better performance and reliability.
Implementing Caching Strategies for Frequently Accessed Logs and Traces
Use a caching layer like Redis to store frequently accessed logs and traces:
import ( "github.com/go-redis/redis/v8" ) func getCachedTrace(traceID string) (*Trace, error) { val, err := redisClient.Get(ctx, "trace:"+traceID).Bytes() if err == redis.Nil { // Trace not in cache, fetch from storage and cache it trace, err := fetchTraceFromStorage(traceID) if err != nil { return nil, err } redisClient.Set(ctx, "trace:"+traceID, trace, 1*time.Hour) return trace, nil } else if err != nil { return nil, err } var trace Trace json.Unmarshal(val, &trace) return &trace, nil }
10. Testing and Validation
Proper testing and validation are crucial to ensure the reliability of your distributed tracing and logging implementation.
Unit Testing Trace Instrumentation
Use the OpenTelemetry testing package to unit test your trace instrumentation:
import ( "testing" "go.opentelemetry.io/otel/sdk/trace/tracetest" ) func TestProcessOrder(t *testing.T) { sr := tracetest.NewSpanRecorder() tp := trace.NewTracerProvider(trace.WithSpanProcessor(sr)) otel.SetTracerProvider(tp) ctx := context.Background() err := ProcessOrder(ctx, Order{ID: "123"}) if err != nil { t.Errorf("ProcessOrder failed: %v", err) } spans := sr.Ended() if len(spans) != 2 { t.Errorf("Expected 2 spans, got %d", len(spans)) } if spans[0].Name() != "ProcessOrder" { t.Errorf("Expected span named 'ProcessOrder', got '%s'", spans[0].Name()) } if spans[1].Name() != "ProcessPayment" { t.Errorf("Expected span named 'ProcessPayment', got '%s'", spans[1].Name()) } }
Integration Testing for the Complete Tracing Pipeline
Set up integration tests that cover your entire tracing pipeline:
func TestTracingPipeline(t *testing.T) { // Start a test Jaeger instance jaeger := startTestJaeger() defer jaeger.Stop() // Initialize your application with tracing app := initializeApp() // Perform some operations that should generate traces resp, err := app.CreateOrder(Order{ID: "123"}) if err != nil { t.Fatalf("Failed to create order: %v", err) } // Wait for traces to be exported time.Sleep(5 * time.Second) // Query Jaeger for the trace traces, err := jaeger.QueryTraces(resp.TraceID) if err != nil { t.Fatalf("Failed to query traces: %v", err) } // Validate the trace validateTrace(t, traces[0]) }
Validating Log Parsing and Processing Rules
Test your Logstash configuration to ensure it correctly parses and processes logs:
input { generator { message => '{"timestamp":"2023-06-01T10:00:00Z","severity":"INFO","message":"Order created","order_id":"123","trace_id":"abc123"}' count => 1 } } filter { json { source => "message" } } output { stdout { codec => rubydebug } }
Run this configuration with logstash -f test_config.conf and verify the output.
Load Testing and Observing Tracing Overhead
Perform load tests to understand the performance impact of tracing:
func BenchmarkWithTracing(b *testing.B) { // Initialize tracing tp := initTracer() defer tp.Shutdown(context.Background()) b.ResetTimer() for i := 0; i <p>Compare the results to understand the overhead introduced by tracing.</p> <h3> Implementing Trace and Log Monitoring for Quality Assurance </h3> <p>Set up monitoring for your tracing and logging systems:</p> <ol> <li>Monitor trace export errors</li> <li>Track log ingestion rates</li> <li>Alert on sudden changes in trace or log volume</li> <li>Monitor Elasticsearch, Logstash, and Kibana health</li> </ol> <h2> 11. Challenges and Considerations </h2> <p>As you implement and scale your distributed tracing and logging system, keep these challenges and considerations in mind:</p><h3> Gestion de la conservation des données et des coûts de stockage </h3>
- Mettre en œuvre des politiques de conservation des données qui équilibrent les exigences de conformité et les coûts de stockage
- Utilisez des solutions de stockage hiérarchisées, en déplaçant les données plus anciennes vers des options de stockage moins chères
- Révisez et optimisez régulièrement votre stratégie de conservation des données
Garantir la confidentialité et la conformité des données dans les journaux et les traces
- Mettre en œuvre un masquage de données robuste pour les informations sensibles
- Assurer le respect des réglementations comme le RGPD, y compris le droit à l'oubli
- Auditez régulièrement vos journaux et traces pour vous assurer qu'aucune donnée sensible n'est collectée par inadvertance
Gestion du contrôle de version et de la compatibilité ascendante dans les données de trace
- Utilisez le versionnage sémantique pour le format de vos données de trace
- Mettez en œuvre des modifications rétrocompatibles lorsque cela est possible
- Lorsque des modifications importantes sont nécessaires, versionnez vos données de trace et maintenez la prise en charge de plusieurs versions pendant une période de transition
Gérer le décalage d'horloge dans les horodatages de trace distribués
- Utilisez un protocole de synchronisation horaire comme NTP sur tous vos services
- Envisagez d'utiliser des horloges logiques en plus de l'heure de l'horloge murale
- Implémentez une tolérance pour de petites quantités de décalage d'horloge dans vos outils d'analyse de trace
Implémentation des contrôles d'accès et de la sécurité pour la pile ELK
- Utilisez l'authentification forte pour Elasticsearch, Logstash et Kibana
- Mettre en œuvre un contrôle d'accès basé sur les rôles (RBAC) pour différents types d'utilisateurs
- Crypter les données en transit et au repos
- Mettez régulièrement à jour et corrigez tous les composants de votre pile ELK
12. Prochaines étapes et aperçu de la partie 6
Dans cet article, nous avons couvert le traçage et la journalisation distribués complets pour notre système de traitement des commandes. Nous avons implémenté le traçage avec OpenTelemetry, mis en place une journalisation centralisée avec la pile ELK, corrélé les journaux et les traces, et exploré des techniques et considérations avancées.
Dans la prochaine et dernière partie de notre série, nous nous concentrerons sur l'état de préparation et l'évolutivité de la production. Nous couvrirons :
- Mise en œuvre de l'authentification et de l'autorisation
- Gestion de la gestion des configurations
- Mise en œuvre de la limitation et de la limitation du débit
- Optimisation pour une concurrence élevée
- Mise en œuvre de stratégies de mise en cache
- Préparation à la mise à l'échelle horizontale
- Réalisation de tests de performances et d'optimisation
Restez à l'écoute pendant que nous apportons la touche finale à notre système sophistiqué de traitement des commandes, garantissant qu'il est prêt pour une utilisation en production à grande échelle !
Besoin d'aide ?
Êtes-vous confronté à des problèmes difficiles ou avez-vous besoin d'un point de vue externe sur une nouvelle idée ou un nouveau projet ? Je peux aider ! Que vous cherchiez à établir une preuve de concept technologique avant de réaliser un investissement plus important ou que vous ayez besoin de conseils sur des problèmes difficiles, je suis là pour vous aider.
Services offerts :
- Résolution de problèmes : S'attaquer à des problèmes complexes avec des solutions innovantes.
- Consultation : Apporter des conseils d'experts et des points de vue neufs sur vos projets.
- Preuve de concept : Développer des modèles préliminaires pour tester et valider vos idées.
Si vous souhaitez travailler avec moi, veuillez nous contacter par e-mail à hungaikevin@gmail.com.
Transformons vos défis en opportunités !
Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!

C est plus adapté aux scénarios où le contrôle direct des ressources matérielles et une optimisation élevée de performances sont nécessaires, tandis que Golang est plus adapté aux scénarios où un développement rapide et un traitement de concurrence élevé sont nécessaires. 1.C's Avantage est dans ses caractéristiques matérielles proches et à des capacités d'optimisation élevées, qui conviennent aux besoins de haute performance tels que le développement de jeux. 2. L'avantage de Golang réside dans sa syntaxe concise et son soutien à la concurrence naturelle, qui convient au développement élevé de services de concurrence.

Golang excelle dans les applications pratiques et est connu pour sa simplicité, son efficacité et sa concurrence. 1) La programmation simultanée est implémentée via des goroutines et des canaux, 2) le code flexible est écrit à l'aide d'interfaces et de polymorphismes, 3) Simplifier la programmation réseau avec des packages Net / HTTP, 4) Construire des robots concurrents efficaces, 5) Déboggage et optimisation par le biais d'outils et de meilleures pratiques.

Les caractéristiques principales de GO incluent la collection de déchets, la liaison statique et le support de concurrence. 1. Le modèle de concurrence du langage GO réalise une programmation concurrente efficace via le goroutine et le canal. 2. Les interfaces et les polymorphismes sont implémentés via des méthodes d'interface, de sorte que différents types peuvent être traités de manière unifiée. 3. L'utilisation de base démontre l'efficacité de la définition et de l'appel des fonctions. 4. Dans une utilisation avancée, les tranches offrent des fonctions puissantes de redimensionnement dynamique. 5. Des erreurs courantes telles que les conditions de course peuvent être détectées et résolues par l'imagerie. 6. Optimisation des performances Réutiliser les objets via Sync.Pool pour réduire la pression de collecte des ordures.

GO Language fonctionne bien dans la construction de systèmes efficaces et évolutifs. Ses avantages incluent: 1. Haute performance: compilé en code machine, vitesse de course rapide; 2. Programmation simultanée: simplifier le multitâche via les goroutines et les canaux; 3. Simplicité: syntaxe concise, réduction des coûts d'apprentissage et de maintenance; 4. Plate-forme multipliée: prend en charge la compilation multiplateforme, déploiement facile.

Confus quant au tri des résultats de la requête SQL. Dans le processus d'apprentissage de SQL, vous rencontrez souvent des problèmes déroutants. Récemment, l'auteur lit "Mick-SQL Basics" ...

La relation entre la convergence des piles technologiques et la sélection de la technologie dans le développement de logiciels, la sélection et la gestion des piles technologiques sont un problème très critique. Récemment, certains lecteurs ont proposé ...

Golang ...

Comment comparer et gérer trois structures en langue go. Dans la programmation GO, il est parfois nécessaire de comparer les différences entre deux structures et d'appliquer ces différences au ...


Outils d'IA chauds

Undresser.AI Undress
Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover
Outil d'IA en ligne pour supprimer les vêtements des photos.

Undress AI Tool
Images de déshabillage gratuites

Clothoff.io
Dissolvant de vêtements AI

AI Hentai Generator
Générez AI Hentai gratuitement.

Article chaud

Outils chauds

MinGW - GNU minimaliste pour Windows
Ce projet est en cours de migration vers osdn.net/projects/mingw, vous pouvez continuer à nous suivre là-bas. MinGW : un port Windows natif de GNU Compiler Collection (GCC), des bibliothèques d'importation et des fichiers d'en-tête librement distribuables pour la création d'applications Windows natives ; inclut des extensions du runtime MSVC pour prendre en charge la fonctionnalité C99. Tous les logiciels MinGW peuvent fonctionner sur les plates-formes Windows 64 bits.

Version Mac de WebStorm
Outils de développement JavaScript utiles

Listes Sec
SecLists est le compagnon ultime du testeur de sécurité. Il s'agit d'une collection de différents types de listes fréquemment utilisées lors des évaluations de sécurité, le tout en un seul endroit. SecLists contribue à rendre les tests de sécurité plus efficaces et productifs en fournissant facilement toutes les listes dont un testeur de sécurité pourrait avoir besoin. Les types de listes incluent les noms d'utilisateur, les mots de passe, les URL, les charges utiles floues, les modèles de données sensibles, les shells Web, etc. Le testeur peut simplement extraire ce référentiel sur une nouvelle machine de test et il aura accès à tous les types de listes dont il a besoin.

Dreamweaver Mac
Outils de développement Web visuel

Navigateur d'examen sécurisé
Safe Exam Browser est un environnement de navigation sécurisé permettant de passer des examens en ligne en toute sécurité. Ce logiciel transforme n'importe quel ordinateur en poste de travail sécurisé. Il contrôle l'accès à n'importe quel utilitaire et empêche les étudiants d'utiliser des ressources non autorisées.