Maison >développement back-end >Tutoriel Python >Affiner votre grand modèle de langage (LLM) avec Mistral : un guide étape par étape
Salut, amis passionnés d'IA ! ? Êtes-vous prêt à libérer tout le potentiel de vos grands modèles linguistiques (LLM) ? Aujourd’hui, nous plongeons dans le monde du mise au point en utilisant le Mistral comme modèle de base. Si vous travaillez sur des tâches PNL personnalisées et souhaitez pousser votre modèle au niveau supérieur, ce guide est fait pour vous ! ?
Le réglage fin vous permet d'adapter un modèle pré-entraîné à votre ensemble de données spécifique, le rendant plus efficace pour votre cas d'utilisation. Que vous travailliez sur des chatbots, sur la génération de contenu ou sur toute autre tâche PNL, un réglage fin peut améliorer considérablement les performances.
Tout d’abord, configurons notre environnement. Assurez-vous que Python est installé avec les bibliothèques nécessaires :
pip install torch transformers datasets
Mistral est un modèle puissant, et nous l'utiliserons comme base pour peaufiner. Voici comment le charger :
from transformers import AutoModelForCausalLM, AutoTokenizer # Load the Mistral model and tokenizer model_name = "mistralai/mistral-7b" model = AutoModelForCausalLM.from_pretrained(model_name) tokenizer = AutoTokenizer.from_pretrained(model_name)
Le réglage fin nécessite un ensemble de données adapté à votre tâche spécifique. Supposons que vous peaufiniez une tâche de génération de texte. Voici comment charger et préparer votre ensemble de données :
from datasets import load_dataset # Load your custom dataset dataset = load_dataset("your_dataset") # Tokenize the data def tokenize_function(examples): return tokenizer(examples["text"], padding="max_length", truncation=True) tokenized_dataset = dataset.map(tokenize_function, batched=True)
Vient maintenant la partie passionnante ! Nous affinerons le modèle Mistral sur votre jeu de données. Pour cela, nous utiliserons l'API Trainer de Hugging Face :
from transformers import Trainer, TrainingArguments # Set up training arguments training_args = TrainingArguments( output_dir="./results", num_train_epochs=3, per_device_train_batch_size=8, per_device_eval_batch_size=8, warmup_steps=500, weight_decay=0.01, logging_dir="./logs", logging_steps=10, ) # Initialize the Trainer trainer = Trainer( model=model, args=training_args, train_dataset=tokenized_dataset["train"], eval_dataset=tokenized_dataset["test"], ) # Start fine-tuning trainer.train()
Après un réglage fin, il est crucial d’évaluer les performances de votre modèle. Voici comment procéder :
# Evaluate the model eval_results = trainer.evaluate() # Print the results print(f"Perplexity: {eval_results['perplexity']}")
Une fois que vous êtes satisfait des résultats, vous pouvez enregistrer et déployer votre modèle :
# Save your fine-tuned model trainer.save_model("./fine-tuned-mistral") # Load and use the model for inference model = AutoModelForCausalLM.from_pretrained("./fine-tuned-mistral")
Et c'est tout ! ? Vous avez peaufiné avec succès votre LLM avec Mistral. Maintenant, allez-y et libérez la puissance de votre modèle sur vos tâches PNL. N'oubliez pas que le réglage fin est un processus itératif, alors n'hésitez pas à expérimenter différents ensembles de données, époques et autres paramètres pour obtenir les meilleurs résultats.
N'hésitez pas à partager vos réflexions ou à poser des questions dans les commentaires ci-dessous. Bon réglage ! ?
Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!