Maison >développement back-end >Tutoriel Python >Prédiction musicale Tensorflow
Dans cet article, je montre comment utiliser Tensorflow pour prédire un style de musique.
Dans mon exemple, je compare la techno et la musique classique.
Vous pouvez retrouver le code sur mon github :
https://github.com/victordalet/sound_to_partition
Pour la première étape, vous devez créer un dossier d'ensemble de données et à l'intérieur ajouter un dossier pour le style de musique, par exemple, j'ajoute un dossier techno et un dossier classique dans lesquels mettre mon son wav.
Je crée un fichier train, avec les arguments max_epochs à compléter.
Modifiez les classes dans le constructeur qui correspondent à votre répertoire dans le dossier dataset.
Dans la méthode de chargement et de traitement, je récupère le fichier wav dans un répertoire différent et j'obtiens le spectrogramme.
À des fins de formation, j'utilise les convolutions et le modèle Keras.
import os import sys from typing import List import librosa import numpy as np from tensorflow.keras.layers import Input, Conv2D, MaxPooling2D, Flatten, Dense from tensorflow.keras.models import Model from tensorflow.keras.optimizers import Adam from sklearn.model_selection import train_test_split from tensorflow.keras.utils import to_categorical from tensorflow.image import resize class Train: def __init__(self): self.X_train = None self.X_test = None self.y_train = None self.y_test = None self.data_dir: str = 'dataset' self.classes: List[str] = ['techno','classic'] self.max_epochs: int = int(sys.argv[1]) @staticmethod def load_and_preprocess_data(data_dir, classes, target_shape=(128, 128)): data = [] labels = [] for i, class_name in enumerate(classes): class_dir = os.path.join(data_dir, class_name) for filename in os.listdir(class_dir): if filename.endswith('.wav'): file_path = os.path.join(class_dir, filename) audio_data, sample_rate = librosa.load(file_path, sr=None) mel_spectrogram = librosa.feature.melspectrogram(y=audio_data, sr=sample_rate) mel_spectrogram = resize(np.expand_dims(mel_spectrogram, axis=-1), target_shape) data.append(mel_spectrogram) labels.append(i) return np.array(data), np.array(labels) def create_model(self): data, labels = self.load_and_preprocess_data(self.data_dir, self.classes) labels = to_categorical(labels, num_classes=len(self.classes)) # Convert labels to one-hot encoding self.X_train, self.X_test, self.y_train, self.y_test = train_test_split(data, labels, test_size=0.2, random_state=42) input_shape = self.X_train[0].shape input_layer = Input(shape=input_shape) x = Conv2D(32, (3, 3), activation='relu')(input_layer) x = MaxPooling2D((2, 2))(x) x = Conv2D(64, (3, 3), activation='relu')(x) x = MaxPooling2D((2, 2))(x) x = Flatten()(x) x = Dense(64, activation='relu')(x) output_layer = Dense(len(self.classes), activation='softmax')(x) self.model = Model(input_layer, output_layer) self.model.compile(optimizer=Adam(learning_rate=0.001), loss='categorical_crossentropy', metrics=['accuracy']) def train_model(self): self.model.fit(self.X_train, self.y_train, epochs=self.max_epochs, batch_size=32, validation_data=(self.X_test, self.y_test)) test_accuracy = self.model.evaluate(self.X_test, self.y_test, verbose=0) print(test_accuracy[1]) def save_model(self): self.model.save('weight.h5') if __name__ == '__main__': train = Train() train.create_model() train.train_model() train.save_model()
Pour tester et utiliser le modèle, j'ai créé cette classe pour récupérer le poids et prédire le style de la musique.
N'oubliez pas d'ajouter les bonnes classes au constructeur.
from typing import List import librosa import numpy as np from tensorflow.keras.models import load_model from tensorflow.image import resize import tensorflow as tf class Test: def __init__(self, audio_file_path: str): self.model = load_model('weight.h5') self.target_shape = (128, 128) self.classes: List[str] = ['techno','classic'] self.audio_file_path: str = audio_file_path def test_audio(self, file_path, model): audio_data, sample_rate = librosa.load(file_path, sr=None) mel_spectrogram = librosa.feature.melspectrogram(y=audio_data, sr=sample_rate) mel_spectrogram = resize(np.expand_dims(mel_spectrogram, axis=-1), self.target_shape) mel_spectrogram = tf.reshape(mel_spectrogram, (1,) + self.target_shape + (1,)) predictions = model.predict(mel_spectrogram) class_probabilities = predictions[0] predicted_class_index = np.argmax(class_probabilities) return class_probabilities, predicted_class_index def test(self): class_probabilities, predicted_class_index = self.test_audio(self.audio_file_path, self.model) for i, class_label in enumerate(self.classes): probability = class_probabilities[i] print(f'Class: {class_label}, Probability: {probability:.4f}') predicted_class = self.classes[predicted_class_index] accuracy = class_probabilities[predicted_class_index] print(f'The audio is classified as: {predicted_class}') print(f'Accuracy: {accuracy:.4f}')
Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!