Maison >interface Web >js tutoriel >Présentation d'Oats~i - Le framework Web ouvert
Je suis développeur Web actif depuis environ cinq ans maintenant. Fin 2019, lorsque j'ai officiellement commencé à faire du développement Web, j'étais entouré d'un vaste écosystème d'outils de développement Web que je pouvais exploiter pour créer des sites Web pour les clients et tout projet personnel que j'avais.
Mais je me suis retrouvé sur la voie du bricolage. Non pas parce que je suis habitué aux moments douloureux et aux casse-tête, mais plutôt parce que je voulais apprendre le développement Web à partir de ses bases, et ne pas me lancer directement dans un framework et développer mes connaissances à partir de là.
D’ailleurs, c’est ce que conseillent les développeurs web les plus expérimentés. Apprenez le HTML, le CSS et le JavaScript Vanilla, et tout le reste sera un jeu d'enfant dans le parc (en quelque sorte).
Eh bien, nous y sommes, cinq ans plus tard et d'une manière ou d'une autre, j'ai fini par créer mon propre framework Web. Ce qui a commencé comme un simple exercice d'apprentissage sur le fonctionnement du Web et des API Web a fini par devenir un projet à part entière avec d'innombrables moments de réflexion, de déceptions et d'eurêka.
Présentation d'Oats~i, le framework web ouvert qui vous ramène également à l'essentiel. Oats~i fournit une structure qui vous permet de créer des applications Web en utilisant HTML, CSS et Vanilla JavaScript, avec une extensibilité puissante, un rendu côté serveur, un routage basé sur le consentement, une réactivité via un gestionnaire de données, un gestionnaire de vues et des hooks, un fragment système d'affichage basé sur des fragments, panneaux d'affichage pour prendre en charge des mises en page supplémentaires, des fenêtres contextuelles et des vues personnalisées au-dessus des fragments, prise en charge des fonctionnalités de navigation Web « natives » telles que les paramètres, les requêtes et les cibles, la pagination, le fractionnement du code et le chargement paresseux pour JavaScript et voir les lots.
Tous ces éléments sont fournis nativement avec le framework, fonctionnant sur Webpack en tant que bundler de modules préféré.
Oats~i ne se soucie pas de votre environnement serveur car il s'agit d'un système purement côté client. Il n'y a pas de JS en cours d'exécution sur le serveur, donc aucune configuration de serveur spéciale supplémentaire n'est nécessaire pour déployer une application Oats~i.
Mais avant d'entrer dans les détails, où se déroule-t-il actuellement ?
Ici : https://www.vertesolutions.com
Ce site est un site de production pour un client spécialisé dans l'éco-conseil et l'éco-business. L'entreprise s'appelle Verte Environmental Solutions, donc si vous me trouvez en train de faire référence au « site Web de Verte », c'est à ce site que je fais référence.
Oats~i ne fonctionne actuellement nulle part ailleurs.
EDIT : Le code source est également public. https://github.com/Oats-i/Oats-i
Avant d'en arriver là, j'ai développé le cadre du panneau d'administration du site (qui est fait sur mesure), testé, mis à jour et ajouté de nouvelles fonctionnalités au fil des ans. Donc, si vous manquez une partie de ce dont je vais parler ici sur le site client, assurez-vous qu'ils fonctionnent sur l'administrateur.
De plus, ce que je présente est un cadre plutôt étoffé, avec quelques fonctionnalités à aborder. Alors soyez prévenu, cela va être un long morceau. Et j'ai essayé de le modifier autant que possible pour le rendre plus court. Cependant, j’ai touché l’essentiel avec cette introduction. Le reste de l’article n’est qu’un effleurement de la surface avant que nous commencions à approfondir dans les prochains articles.
Alors, assez de cette introduction.
Approfondissons un peu Oats~i, tel que je l'ai construit jusqu'à présent, et examinons une partie de ce qu'il offre immédiatement et ce que je prévois pour l'avenir.
En appelant Oats~i un framework Web ouvert, je veux dire qu'Oats~i est un framework simple mais extensible dont le code peut être écrit en HTML simple et en JavaScript Vanilla, le CSS étant bien sûr l'outil de style de facto. À partir de cette configuration simple, vous pouvez ajouter vos propres moteurs de modèles tiers ou personnalisés, bibliothèques CSS et autres outils, à condition que Webpack le permette et que vous puissiez le configurer.
Oats~i fonctionne via un système de construction qui génère des fragments en tant que « composants » ou éléments essentiels de l'application Web. Prenez ces vues simples par exemple :
Les deux images ont la « vue racine » de l'application, qui est la vue principale de l'application que l'utilisateur verra toujours. Ensuite, il y a les autres vues (fragments) qui seront rendues dynamiquement à l'intérieur.
La vue racine peut contenir les liens ou boutons de navigation principaux, ainsi que d'autres vues que l'utilisateur verra toujours sur l'application et qui ne changeront généralement pas.
Le reste des vues à l'intérieur de la vue racine changera, et cela sera basé sur les fragments chargés et déchargés hors de l'application, en fonction du routage de l'utilisateur. Les fragments passent par un processus de construction qui obtient principalement le rendu de la vue, la place dans le nœud parent ciblé, puis vous permet de câbler le reste de votre application et votre logique métier.
Un processus de construction Oats~i déclenchera généralement les méthodes principales suivantes dans votre fragment :
//gets the view for your fragment async initializeView(cb){ } //triggers after the fragment view has been attached to the DOM onUIBind(serverSideRendered){ } //triggers after the fragment has completed building and anytime its rebuilt for the same route async onQueryParamsDataUpdate(changedParams, data, savedState, routeParams, isServerSide){ }
Et c'est essentiellement tout.
Avec une telle structure squelettique, vous disposez de quelques flexibilités, telles que :
La première méthode que vous remplacez (initializeView()) peut être complétée comme ceci :
async initializeView(cb){ const viewAsString = `<p class="text">My view</p>`; this.onViewInitSuccess(viewAsString, cb); }
Nous obtenons notre vue sous forme de chaîne HTML et la transmettons à la méthode interne (onViewInitSuccess()) qui prend également le rappel transmis à la méthode d'origine.
L'appel à onViewInitSuccess() déclenche le processus de construction pour passer aux étapes suivantes.
Écrire du HTML sous forme de chaîne dans JS est simple et Oats~i le permet, mais cela peut souvent devenir problématique. Cependant, au lieu de créer une nouvelle syntaxe ou un nouveau système pour écrire des vues pour Oats~i, Oats~i vous permet de brancher le moteur de création de modèles qui fonctionne le mieux pour votre cas d'utilisation, de le connecter à la configuration de votre webpack et de le laisser opérer sa magie. .
Pour le cas de Verte, j'utilise handlebars, combiné avec handlebars-loader pour écrire des fichiers de vue séparés au format hbs et les exiger simplement dans mon code.
Donc, au lieu de
const viewAsString = `<p class="text">My view</p>`;
Mes opinions sont désormais fournies sous la forme :
const viewAsString = require("./relative/path/to/view.hbs")(myTemplatingData);
Si je souhaite utiliser ejs à la place, par exemple, il me suffit de mettre à jour la configuration de mon webpack et d'utiliser la bonne syntaxe d'importation pour ce cas d'utilisation.
Oats~Je me soucie seulement que la vue qui lui est transmise soit une chaîne HTML.
Oats~i va jusqu'à vous permettre de rechercher vos opinions sur le réseau. C'est en partie pourquoi l'async existe sur la méthode initializeView().
Oats~i s'attend également à ce que vous fassiez éventuellement des appels réseau à ce stade, soit pour une vue complète basée sur le type d'utilisateur ou d'autres facteurs, soit pour obtenir des données de modèle basées sur votre vue et votre logique métier.
Ce que vous faites ici dépend totalement de vos raisons commerciales et techniques.
**REMARQUE : **Il y a une bonne raison pour laquelle le système de build n'attend pas les promesses au stade de la construction pour être résolues à l'aide de wait ou then(), mais utilise à la place un rappel transmis aux méthodes concernées. Cela deviendra clair lorsque nous approfondirons le fonctionnement d'Oats~i, dans un article ultérieur.
Le code Oats~i est en JavaScript vanille, le langage « natif » que les navigateurs Web comprennent. Cependant, vous pouvez bénéficier de quelques flexibilités lors de la rédaction de votre logique métier.
Par exemple, vous pouvez porter jQuery dans votre projet, pour quelque raison que ce soit, et l'utiliser pour écrire une partie de votre logique. En fait, je l'ai fait il y a longtemps, avant même qu'Oats~i ne soit construit dans son état actuel, pour écrire environ cinq lignes de code pour des effets de défilement fluides sur le site Web de Verte. (TLDR, j'avais la flemme de penser au-delà de Stack Overflow, mdr).
Vous pouvez théoriquement utiliser Oats~i dans un environnement TypeScript, mais je n'ai pas encore testé cela. La seule utilisation que j'avais de TypeScript était son système de typage, en conjonction avec JSDocs, pour documenter les types dans le framework, une méthode que j'ai documentée il y a environ quelque temps.
Vous pouvez en savoir plus sur l'intégration de JSDocs et TypeScript à des fins de saisie, sans le processus de construction, ici.
Webpack est un puissant outil de développement Web qui permet des configurations de projets extrêmement complexes, offrant aux équipes de développement la flexibilité dont elles ont besoin pour construire un projet selon ses spécifications uniques.
Oats~i fonctionne sur Webpack, le framework s'appuyant principalement sur la fonctionnalité de fractionnement de code et de chargement paresseux de Webpack pour prendre en charge les morceaux et les bundles de fragments asynchrones.
Cela signifie que vos fragments peuvent être chargés en un seul paquet ou divisés à l'aide du webpack en plusieurs morceaux, optimisant ainsi les vitesses de chargement initiales de votre application Web Oats~i. Associez cela à des vues provenant du réseau, si votre application en a besoin, et il existe plusieurs façons d'optimiser votre application dans Oats~i pour garantir la meilleure expérience utilisateur en ce qui concerne les temps de chargement.
Le plus grand avantage d'avoir webpack comme base pour Oats~i est peut-être la grande configuration laissée à votre disposition, vous permettant de créer votre application selon vos besoins.
That's why you can set up templating engines that suit your view rendering process, configure babel and other loaders/plugins for your app, and simply build something that is fully-specced to your project's specifics.
Oats~i runs a simple base webpack configuration that sets up handlebars-loader, html-loader, css loader, asset loader, and HTMLWebpackPlugin to create your server-side views or templates. Using webpack-merge, you can extend these configurations and architect your web app as you want it.
This makes Oats~i works a lot like a plug-and-play system. It gives you a skeleton, and you can wrap and configure your app around it as you like.
Routing is a default feature in Oats~i. In fact, to run the app, you must provide routing information that the app will use to initialize itself and manage user navigation and fragment rendering.
A simple routing information looks like this:
Const MyRoutingInfos = [ { route: "/my-route", target: myMainFragmentBuilder, nestedChildFragments: [ myNestedChildFragmentBuilder ] } ]
When Oats~i loads from the server, it checks the current url and finds a match for it in the provided routing info. In Verte's case, when you load "/", Oats~i searches for the routing info with that that route as a match and then inflates the fragments in order from "target" to each nested child fragment.
You can also provide a default route that Oats~i will try to start the app from, unless the client had sourced the page from a valid route given in your routing info.
Oats~i also supports the use of params in routes, using the colon syntax commonly used in express.
Therefore, a route defined like /:myParams is valid, and will map for routes such as /user-1, /user-2, /user-3.
Oats~i goes a step farther and parses these params for you.
When setting up your fragment, you have the option of setting up params it should watch out for. The name of the param should be an EXACT match to the name used in your routing info.
When building the fragment, Oats~i will parse the value, note any changes, and pass two arguments to your onQueryParamsDataUpdate() method. These are an object of all watched params that have changed, and the current value of all watched params.
Therefore, if you have a fragment that shows user information, defined under the route /:userID, and the client first navigates to /user-xyz, you'll be able to read the value of userID as user-xyz. If the client routes again and this time the route is /user-abc, you'll immediately know that the value of userID has changed to user-abc and you can respond appropriately.
Queries are also a core part of web browsing and urls. Oats~i also parses queries for you, as long as you tell the fragment to watch them, using their keys.
For instance, if your route /:userID maps to /user-3?promptUpgrade=true, and you specify in your fragment that you want to watch updates for the query with the key "promptUpgrade", these will be parsed and sent to the method onQueryParamsDataUpdate() as well.
However:
You cannot write routes in your routing info using queries. Only params are supported. Oats~i looks for the valid routing info for a given url after truncating any queries and targets. The parsing will be done afterwards.
Verte's website already uses this mechanism when rendering views for blog articles at the blog article page. The route for each article is parameterized and we only respond to a change in the watched param.
This is perhaps a very unique feature from Oats~i. Consent-based routing gives you power over the user experience, allowing you to warn users about navigating away from a crucial page in case there are any pending processes, all controlled in-app.
Instead of using the provided standard browser API that pops up a dialog box, Oats~i uses a mix of History API and state management to detect a pop or navigation, ask the current rendered fragments for consent, halt subsequent navigation attempts, and proceed only if the user grants it permission.
If the user chooses to remain in their current view, Oats~i restores the browser's navigation path to the original state.
Of course, having users click on "ok" every time they want to navigate around your app is a bad idea. So, by default, Oats~i fragments and view panels (more on these later) consent to a navigation attempt by default.
Verte internally uses this to safeguard the admin when curating blog content, in case the current draft has not yet been picked up by the autosave script within its time delta. In case the admin wants to navigate away from the blog editor and there are unsaved drafts, they'll get a warning through a dialog and choose to either continue navigating away or stay on the page and manually save their work.
In Oats~i, the framework will primarily render a route through fragments. However, there's an extra utility called view panels that allows you to render other views that your fragment may need on the fly. These include dialog boxes, hamburger panels, or even loading screens with bespoke information that the user may need.
To spawn a view panel, you have to request for it through the view panels manager. Oats~i self manages views for fragments and view panels, meaning you never have to write logic to bind your primary fragment views to the DOM or remove them once a view panel or its associated fragment is being destroyed due to a change in navigation.
A view panel, spawned by a view panels manager is also automatically wired into the consent-routing process of the fragment, allowing you to extend fragment functionality.
View panels can also watch params and queries.
View panels can be triggered either by route changes or directly via a call to the fragment's view panels manager. For the former, this is where having queries in your route and linking them to a view panel within the fragment can come in handy.
If you have a route "/:post-id" which is currently represented in the browser as "/nice-post?showComments=true", you can use a route-triggered view panel within the fragment to automatically pop a side panel that loads the post comments and allows the user to read through them.
This feature is typically accessible through the onQueryParamsDataUpdate() method. Calling super (in case you've overridden it) will invoke the fragment's view panels manager to attempt to render any route-triggered view panels.
The biggest advantage of this kind of setup is that your view panel's rendering and behavior is now tied to the navigation, making the user experience more natural.
So, given our example, if the user navigated to "/nice-post?showComments=true", read the comments, and pressed back, the route will change back to "/nice-post", the view panels manager will note this change, and automatically trigger the destruction process for the view panel as long as consent has been granted.
Just like fragments, view panels also grant consent by default. Therefore, you should override the consent method ONLY when necessary.
A modern web framework is not complete without a good touch of reactivity and data management. And here's where perhaps the most crucial difference between Oats~i and other web frameworks comes in.
Oats~i doesn't automatically couple views to a piece of data or state.
Instead, this is left entirely to the developer to do it based on their app or business logic.
As is, you can use Oats~i to build a web app with multiple static pages rendered under fragments and view panels and end it at that. The app will just work. If you want to add data, network calls, and reactivity, the data manager utility covers everything, and only to the scope that you determine, without affecting any surrounding views or data.
Let's look at the data manager and its supporting utilities: the network interface and view managers.
The data manager is an Oats~i utility that allows you to tie data, server-resources, and client views together. The data manager holds an array of models, a model being the core piece or type of data associated with a section of your app and its selected views.
Currently, I've designed it to take a model as an object with arrays nested within, as it's the most common format for passing data around client and server resources (as Json).
Therefore, a simple model can look something like this:
{ my: string, simple: number, obj: { ofArrays: number[], objArrays: { objKey: string }[] } }
The data manager works by scoping its model. This means that every bit of the model can be treated as a unit, creating a set of dot-separated keys that define a specific value or type in your data.
For instance, in the example above, the data manager will break down the model into the following scopes: "MODEL_ROOT | my | simple | obj | obj.ofArrays | obj.objArrays | obj.objArrays.array.objKey "
These scopes represent:
MODEL_ROOT -> { my: string, simple: number, obj: { ofArrays: number[], objArrays: { objKey: string }[] } } my -> string, simple -> number obj -> { ofArrays: number[], objArrays: { objKey: string }[] } obj.ofArrays -> number[] obj.objArrays -> { objKey: string }[] obj.objArrays.array.objKey -> string
You can treat these scopes as dot-separated paths to a distinct piece of data.
With these scopes, the data manager then gives you, the developer, fine-grained control of your data, allowing to assign a network interface or view manager(s) to any of these data.
Let's shallowly dive into what these two are.
In most apps (native or web), the data shown to the user is sourced from an outside resource, a server. Therefore, the internal model often needs an API interface that sits between itself and the external resource.
In Oats~i's case, the network interface will perform the CRUD operation you need in relation to the data held by the data manager and ensure both ends are in sync.
The network interface is defined as an object with three methods:
getReqBody()
This method gets the body of the request and other data such as method, address, headers, etc.
onDataLoadPostProcess()
Because the type of response data and the type of your internal model may vary, the network interface allows you to post-process the response and provide the final data in the data manager's model type.
onDataLoadError()
This method allows you to format the error response in case the network call fails.
API designs are varied, meaning, the addresses or routes used to make CRUD operations for a given piece of data can be different.
For instance, a social media app can have a different API for loading all posts, and each post running unique APIs to repost, like, or report the post.
Assuming such an architecture, using scoping within the data manager allows you to specify unique network interfaces for each scope.
For instance, you can have a network interface for the MODEL_ROOT network call (which will load the posts), "repost" network call, and any other call that can be scoped out of the structure of the model the data manager holds.
This gives you a whole unique way of viewing your data, breaking it down from one large resource with a common end point, to a collection of multiple data units that can be handled independently through the data manager.
A key thing to note here is that you can only have one network interface per scope, creating a single "endpoint" for every scoped piece of data in your model.
Through the network interface, the data manager can now keep data in sync between its model and the server. Now what about displaying it to the user and, more importantly, showing them when it's changing?
That's where the view manager comes in.
View managers respond to mutations or changes happening to data held by the data manager, through a network operation or a direct in-app change.
Oats~i currently supports two types of view managers - a standard view manager and a list view manager.
A standard view manager is ideal for simple views with components that are not duplicated over a list. On the other hand, a list view manager is best for "complex" views with view components duplicated over a list.
Regardless of the type, a view manager will tell you of the following changes within a model or its scoped types:
onMutate()
This method fires when a data type of the scope is changing
onCommit()
This method fires when a mutation of the data type of the scope has been completed, thus committed
onCancel()
This method fires when a mutation of the data type of the scope has been cancelled
onError()
This method fires when a mutation of the data type of the scope has encountered an error, allowing you to retry
There's also the builder set of methods, which allow you to pass in a view (as a HTML string) inflated with your data. These methods also inform you of when the view has been attached or about to be detached, depending on the mutation.
These three methods are:
inflateRoot()
Gets the templated view as a string for the data provided
onViewAttach()
Calls when the view has been attached to the DOM
onViewDetach()
Calls when the view is about to be detached from the DOM
You can see the results of these interactions in the blog pages of Verte's website.
Using the combination of builder methods, root hooks, and component hooks, the data-driven dynamic views of the blog and blog article fragments can show loading animations when we're sourcing data from the network, show error messages in case of a failure, and populate the views once the new data from the network interface has been committed.
A view manager will also have component hooks which allow for even finer grained reactivity, with the elements of each view node.
For instance, using the model:
{ my: string, simple: number, obj: { ofArrays: number[], objArrays: { objKey: string }[] } }
And a view manager of the scope "MODEL_ROOT" (therefore the whole model), we can assume that the main view component showing the data of the MODEL_ROOT scope, has components within it that my show the specific data held in "my", "simple", "obj", or generally the child scopes of MODEL_ROOT.
Therefore, you can set up a component or element of your view to react to changes in these "child" values.
All these hook methods get a viewNode parameter passed to them by the view manager, so you always have a reference of which view node these data changes are associated with and query its components as you need.
However, you should not bother with removing these core view elements once they're no longer needed. The view manager handles that for you.
Oats~i doesn't operate through a virtual DOM. Instead, the fragments, view panels, and view managers directly use the DOM APIs to insert or remove DOM elements.
After inserting your view component into the DOM, the view manager will provide you with its direct reference in the builder, root, and component hooks. Therefore, you can just directly add listeners, change attributes, or simply manipulate the DOM element using the direct DOM apis.
A core bit of a complex web app is lifecycle management. Oats~i has its own lifecycle management process for fragments and view panels, whose functions are extended to other utilities such as the data manager, view managers, and remote request util (the actual utility the data manager uses in conjunction with the network interface to make network calls).
Therefore, straight off the bat, using Oats~i and its core utilities will have lifecycle automatically managed for you.
For instance, if you're using the data manager within a fragment to make a CRUD operation, and the user navigates away from the fragment, the data manager and remote request util will be able to cancel all network operations, skip updating view managers, and unregister them, because your fragment or view panel no longer exists.
As an Oats~i developer, you can make use of a fragment or view panel's lifecycle management to create robust lifecycle-aware libraries that will work well in an Oats~i environment.
You just have to grab the lifecycle object using the internal method,
getLifeCycleObject()
and attach listeners to it. These listeners typically include four methods for:
onFragmentRunning()
Called when the fragment has been created and is running
onFragmentCancelled()
Called when the fragment's build has been cancelled
onFragmentDestroyed()
Called when the fragment has been destroyed
onViewReady()
Called when the fragment's view has been attached to DOM
*Note: *"Fragment" here also applies to view panels.
The main calls you need to watch out for are onFragmentRunning(), onViewReady(), and onFragmentDestroyed(). If your library adds functionality that is not UI-related, you can enable the library after getting the onFragmentRunning() call.
If the library manipulates views (such as an animation library), you can enable its functionality after receiving the onViewReady() call.
Once you get the onFragmentDestroyed() call, pack up, and stop everything.
We have talk about a lot about some core features of Oats~i but we haven't talked about paradigm. How will you write core Oats~i code?
Well, Oats~i is an OOP-based web framework. That means most utilities are provided as classes. A fragment is created from an AppMainFragment or AppChildFragment class. The data manager is a class. View managers are classes and so on.
I chose OOP because of its reusability, garbage collection, and a much cleaner way of managing functions and processes within Oats~i.
For instance, no pun intended, having the fragment as a class allows Oats~i to do something clever. It never reconstructs the fragment class if it determines that its being reused. Instead, the build process just goes directly to firing onQueryParamsDataUpdate(), and doesn't re-render the fragment's main view or update that section of the DOM, since it's unnecessary.
Another advantage of doing this is that your fragment can retain part of its state amidst related route calls.
For instance, in Verte's case, when you're in the fragment that renders a blog article, clicking on another article under the "Other stories" list doesn't reconstruct the fragment. Instead, the original view is untouched, and only the dynamic, data-driven views, ran by the data manager in conjunction with the view manager, update based on the new param value obtained from onQueryParamsDataUpdate().
Just because the Oats~i core uses OOP, doesn't mean you're fully restricted to creating libraries that follow the OOP paradigm. Simply making them lifecycle aware is enough.
This will allow them to capture and free resources from the fragment as Oats~i renders and destroys them.
When porting Verte's client to Oats~i, I've used this exact strategy to reuse some functional scripts I'd written for the original webpages.
Therefore, I expect very few bottlenecks and paradigm strictness for developers seeking to use their functional scripts in an Oats~i project, as long as they're lifecycle aware.
Finally, a big part of modern web frameworks - server-side rendering.
Oats~i natively supports server-side rendering, with no need for running JavaScript on the server.
Using HTMLWebpackPlugin, you can extract the views you use for each fragment in your Oats~i app into their own .html/.hbs files that you can send to the client when they request for a page on a fresh load.
The only requirement is your view structure from the server is the same as the app would have rendered it.
But we're not done yet.
The views you'll render from your server most likely will represent some state of data. How does Oats~i handle this and proceed from the server-side rendered state?
You'll ideally be using the data manager to manage dynamic or data-driven views in your Oats~i app. Now, using it, you can can leverage server-side hydration that uses a script rendered in the head tag from the server to help the data manager understand the data state from the server, save it, and have attached view managers also update their states based on it, and continue running the app from there.
Here's how it works.
In your markup's head, at the server, you can add a script of the following format:
<script id="hydrator_id"> const DataManagerHydrationInfo = { "info_key": { info: model[] extras: * } } window.DataManagerHydrationInfo = DataManagerHydrationInfo; </script>
This script provides important information for the data manager from the server, that gives it the full picture or an idea of the data state.
Each data manager will have an "info_key" that it will read its data state from. Once you set the data manager to hydrate from server side, it will find the script with the id you provide, get the exposed variable DataManagerHydrationInfo, and read the value of "info_key".
This value should be an array, ideally of the same type as the data manager's model. However, it can be different.
That's because the data manager runs a multi-step hydration process.
Reading from a script can have its own issues and vulnerabilities. You can run a validation check on the data stored in the hydration script before the data manager commits it.
Depending on your business logic and web app design, the data format sourced from your server can be different from the model you run in your data manager. Oats~i's data manager runs an optional preprocessing step during hydration, that allows you to convert the data from the hydrator to your model's format.
This step permits you to be cautious with the data you let free in your hydration script, open to web scrapers, robots, and search engines.
You can run an optional network step where you can get private or hidden data that your data manager's model needs, but should never be privy to web scrapers or robots scouring the web.
For instance, if you're hydrating a shopping cart, you can have the hydration script from the server contain only general information about the products, with public ids that when passed to your secure backend, will return more secret information that you'll use to check-out the user.
So, your hydration script can hold information as basic as what is already rendered in the html, have the data manager commit that immediately internally, then source everything else from the network cycle.
If you've managed to read up to this point, kudos, you're a champ! That's the best I could do to try and squeeze roughly four years of work into a small "introductory" blog post.
Oats~i has been a massive learning project for me and am both anxious and excited to let the tech community know about it. There's a lot to unpack, teach, learn, and debug.
My plan at the moment is to open source Oats~i. I'm working on the specifics and hopefully the whole codebase will drop in the next few days and we can all dig in, build actual web apps through the framework, and take it up its paces.
For now, I'll appreciate your feedback, comments, and questions concerning Oats~i, if you have any.
Check out Verte Environmental Solution's website and see it in action.
I'm available on LinkedIn, so drop by and say hi.
See you soon, when we'll, hopefully, start building with Oats~i.
EDIT: The source code is now public. https://github.com/Oats-i/Oats-i
Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!