Maison  >  Article  >  interface Web  >  Approche de l'algorithme de force brute à l'aide de Javascript

Approche de l'algorithme de force brute à l'aide de Javascript

王林
王林original
2024-08-07 18:31:101252parcourir

Approaching Brute Force Algorithm Using Javascript

  1. Vous trouverez ci-dessous quelques exemples qui commencent avec un niveau simple à avancé (problème de voyageur de commerce et problème de sac à dos 0/1)
  2. Ces exemples sont basés sur l'algorithme de force brute

Ma note :-

  1. Il y a plusieurs inconvénients à cet algorithme de force brute, mais avant de se lancer directement dans la programmation dynamique et d'autres approches
  2. vous devriez avoir des idées sur cette approche et vous devez découvrir pourquoi nous avons besoin d'un modèle de programmation dynamique (récursion + mémorisation)

Si vous observez attentivement le modèle de la force brute

const wrapper = (value) => {
    const helper = (combinedArray, depth) => {
       if (depth == 3) {
          // operation
           return ;
       }

       for (let coin of coins) {
           if (value - coin >=0) {
               combinedArray.push(coin);
               helper(combinedArray, label+1);
               combinedArray.pop();
           }
       }
    }

    helper([], 0);
    return result;
};

const res = wrapper(value);
console.log(res);

Q1. Commencez avec 2 combinaisons de pièces

const wrapper = () => {
    const coinSide = ['head', 'tail']
    const result = [];
    const helper = (currentCombination, depth) => {
        if (depth == 2) {
            result.push([...currentCombination]);
            return ;
        }

        for (side of coinSide) {
            currentCombination.push(side);
            helper(currentCombination, depth +1);
            currentCombination.pop()
        }
    }

    helper([], 0);

    return result;
};

const res = wrapper();

console.log(res);

Q2. Commencez avec 3 combinaisons de pièces

const wrapper = () => {
    const coinSide = ['head', 'tail']
    const result = [];
    const helper = (currentCombination, depth) => {
        if (depth == 3) {
            result.push([...currentCombination]);
            return ;
        }

        for (side of coinSide) {
            currentCombination.push(side);
            helper(currentCombination, depth +1);
            currentCombination.pop()
        }
    }

    helper([], 0);

    return result;
};

const res = wrapper();

console.log(res);

/*
[
  [ 'head', 'head', 'head' ],
  [ 'head', 'head', 'tail' ],
  [ 'head', 'tail', 'head' ],
  [ 'head', 'tail', 'tail' ],
  [ 'tail', 'head', 'head' ],
  [ 'tail', 'head', 'tail' ],
  [ 'tail', 'tail', 'head' ],
  [ 'tail', 'tail', 'tail' ]
]
*/

Q3. Disposition des sièges

const wrapper = () => {
    const result = [];
    const group = ['b1', 'b2', 'g1']
    const helper = (combination, depth) => {
        if (depth == 3) {
            result.push([...combination]);
            return;
        }

        for (let item of group) {
            if (combination.indexOf(item) < 0) {
                combination.push(item);
            helper(combination, depth +1);
            combination.pop();
            }
        }
    }

    helper([], 0);

    return result;
};

/*
[
  [ 'b1', 'b2', 'g1' ],
  [ 'b1', 'g1', 'b2' ],
  [ 'b2', 'b1', 'g1' ],
  [ 'b2', 'g1', 'b1' ],
  [ 'g1', 'b1', 'b2' ],
  [ 'g1', 'b2', 'b1' ]
]
*/

Q4. Problème pièce/somme

// Minimum coin Problem
const wrapper = (value) => {
    let result = 99999;
    let resultArr = [];
    const coins = [10, 6, 1];
    const helper = (value, label, combinedArray) => {
       if (value == 0) {
           if (result > label) {
               result = label;
               resultArr = [...combinedArray]
           }
           return ;
       }

       for (let coin of coins) {
           if (value - coin >=0) {
               combinedArray.push(coin);
               helper(value-coin, label+1, combinedArray);
               combinedArray.pop();
           }
       }
    }

    helper(value, 0, []);
    console.log(resultArr)

    return result;
};

const res = wrapper(12);

console.log(res);
/*
[ 6, 6 ]
2
*/

Génération Q5.Set

// Problem 1: Generating All Subsets of a Set
// Problem Statement:
// Given a set of unique elements, generate all possible subsets (the power set).
// This solution need more enhancement.
// Example:
// Input: [1, 2, 3]
// Output: [[], [1], [2], [3], [1, 2], [1, 3], [2, 3], [1, 2, 3]]


const wrapper = () => {
    const result = [[]];
    const input = [1,2,3];
    input.forEach(item => result.push([item]));

    const helper = (combination, depth) => {
        if (depth == 2) {
            if (result.indexOf(combination) < 0) {
                result.push([...combination]);
            }


            return;
        }

        for (let item of input) {
           if (combination.indexOf(item) < 0) {
                combination.push(item);
            helper(combination, depth+1);
            combination.pop()
           }
        }

    }

    helper([], 0);
    result.push([...input])
    return result;
}

const test = wrapper();

console.log(test);
/*
[
  [],          [ 1 ],
  [ 2 ],       [ 3 ],
  [ 1, 2 ],    [ 1, 3 ],
  [ 2, 1 ],    [ 2, 3 ],
  [ 3, 1 ],    [ 3, 2 ],
  [ 1, 2, 3 ]
]
*/

Q6.Problème du vendeur itinérant utilisant l'algorithme de force brute

// Travelling sales man problem using brut force algorithm

function calculateDistance(matrix, path) {
  let totalDistance = 0;
  for (let i = 0; i < path.length - 1; i++) {
    totalDistance += matrix[path[i]][path[i + 1]];
  }
  // Return to the starting city
  totalDistance += matrix[path[path.length - 1]][path[0]];
  return totalDistance;
}

function permute(arr) {
  const result = [];

  const helper = (combination, depth) => {
      if (depth == 4) {
          result.push([...combination]);

          return;
      }

      for (let item of arr) {
          if (combination.indexOf(item) < 0) {
              combination.push(item);
              helper(combination, depth +1);
              combination.pop()
          }
      }
  }
  helper([], 0);

  return result;
}

function tsp(matrix) {
  const cities = Array.from({length: matrix.length}, (_, index) => index)
  console.log(cities)
  const permutations = permute(cities);
  console.log(permutations)
  let minDistance = Infinity;
  let bestPath = [];

  for (let path of permutations) {
    const distance = calculateDistance(matrix, path);
    if (distance < minDistance) {
      minDistance = distance;
      bestPath = path;
    }
  }

  return { minDistance, bestPath };
}

// Example usage:
const distanceMatrix = [
  [0, 10, 15, 20],
  [10, 0, 35, 25],
  [15, 35, 0, 30],
  [20, 25, 30, 0]
];

const result = tsp(distanceMatrix);

console.log(`The shortest distance is: ${result.minDistance}`);
console.log(`The best path is: ${result.bestPath}`);
/*
Initialization:  Calculate Distance Explanation

totalDistance is initialized to 0.
First Iteration (i = 0):

From city 0 to city 1: matrix[0][1] is 10.
Add 10 to totalDistance, making it 10.
Second Iteration (i = 1):

From city 1 to city 3: matrix[1][3] is 25.
Add 25 to totalDistance, making it 35.
Third Iteration (i = 2):

From city 3 to city 2: matrix[3][2] is 30.
Add 30 to totalDistance, making it 65.
Return to Starting City:

From city 2 back to city 0: matrix[2][0] is 15.
Add 15 to totalDistance, making it 80.
Return Total Distance:

The function returns 80, which is the total distance of the path [0, 1, 3, 2, 0].

// Output
[ 0, 1, 2, 3 ]
[
  [ 0, 1, 2, 3 ], [ 0, 1, 3, 2 ],
  [ 0, 2, 1, 3 ], [ 0, 2, 3, 1 ],
  [ 0, 3, 1, 2 ], [ 0, 3, 2, 1 ],
  [ 1, 0, 2, 3 ], [ 1, 0, 3, 2 ],
  [ 1, 2, 0, 3 ], [ 1, 2, 3, 0 ],
  [ 1, 3, 0, 2 ], [ 1, 3, 2, 0 ],
  [ 2, 0, 1, 3 ], [ 2, 0, 3, 1 ],
  [ 2, 1, 0, 3 ], [ 2, 1, 3, 0 ],
  [ 2, 3, 0, 1 ], [ 2, 3, 1, 0 ],
  [ 3, 0, 1, 2 ], [ 3, 0, 2, 1 ],
  [ 3, 1, 0, 2 ], [ 3, 1, 2, 0 ],
  [ 3, 2, 0, 1 ], [ 3, 2, 1, 0 ]
]
The shortest distance is: 80
The best path is: 0,1,3,2

*/

Q7. 0/1 sac à dos Brut force Problème

// 0/1 knapsack Brut force Problem
function knapsackBruteForce(weights, values, capacity) {
  let n = weights.length;
  let maxValue = 0;
  const subsetResult = [];
  const binaryVals = [0, 1];

  // Function to calculate the total weight and value of a subset
  function calculateSubset(subset) {
    let totalWeight = 0;
    let totalValue = 0;
    for (let i = 0; i < subset.length; i++) {
      if (subset[i]) {
        totalWeight += weights[i];
        totalValue += values[i];
      }
    }
    return { totalWeight, totalValue };
  }

  const helper = (combination, depth) => {
      if (depth == 4) {
          subsetResult.push([...combination]);
          return ;
      }

      for (let item of binaryVals) {
          combination.push(item);
          helper(combination, depth +1);
          combination.pop()
      }

  }

    helper([], 0);
    console.log(subsetResult)
  // Generate all subsets using binary representation
  for (let subset of subsetResult) {
    let { totalWeight, totalValue } = calculateSubset(subset);
    if (totalWeight <= capacity && totalValue > maxValue) {
      maxValue = totalValue;
    }
  }

  return maxValue;
}

// Example usage:
const weights = [2, 3, 4, 5];
const values = [3, 4, 5, 6];
const capacity = 5;
const maxVal = knapsackBruteForce(weights, values, capacity);

console.log(`The maximum value in the knapsack is: ${maxVal}`);
/*
[
  [ 0, 0, 0, 0 ], [ 0, 0, 0, 1 ],
  [ 0, 0, 1, 0 ], [ 0, 0, 1, 1 ],
  [ 0, 1, 0, 0 ], [ 0, 1, 0, 1 ],
  [ 0, 1, 1, 0 ], [ 0, 1, 1, 1 ],
  [ 1, 0, 0, 0 ], [ 1, 0, 0, 1 ],
  [ 1, 0, 1, 0 ], [ 1, 0, 1, 1 ],
  [ 1, 1, 0, 0 ], [ 1, 1, 0, 1 ],
  [ 1, 1, 1, 0 ], [ 1, 1, 1, 1 ]
]
The maximum value in the knapsack is: 7
*/

Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!

Déclaration:
Le contenu de cet article est volontairement contribué par les internautes et les droits d'auteur appartiennent à l'auteur original. Ce site n'assume aucune responsabilité légale correspondante. Si vous trouvez un contenu suspecté de plagiat ou de contrefaçon, veuillez contacter admin@php.cn