Maison  >  Article  >  développement back-end  >  Créez votre propre serveur SMTP en Go

Créez votre propre serveur SMTP en Go

PHPz
PHPzoriginal
2024-07-28 02:01:03972parcourir

Build Your Own SMTP Server in Go

Chez Valyent, nous construisons des logiciels open source pour les développeurs.

Dans le cadre de cette mission, nous développons actuellement Ferdinand, notre service d'envoi d'emails pour les développeurs (actuellement en alpha).

L'infrastructure de messagerie repose sur plusieurs protocoles clés, le plus important étant :

  1. SMTP (Simple Mail Transfer Protocol) : utilisé pour envoyer et recevoir des e-mails entre les serveurs de messagerie.
  2. IMAP (Internet Message Access Protocol) : permet aux utilisateurs de lire et de gérer les e-mails directement depuis le serveur.
  3. POP3 (Post Office Protocol version 3) : télécharge les e-mails du serveur vers l'appareil local, les supprimant généralement du serveur.

Dans l'article d'aujourd'hui, nous allons nous concentrer sur la création de notre propre serveur SMTP sortant, reflétant l'approche que nous avons adoptée avec Ferdinand. Ce faisant, nous acquerrons une compréhension approfondie du composant le plus crucial de l’infrastructure d’envoi d’e-mails.

"Ce que je ne peux pas créer, je ne le comprends pas."

—Richard Feynman

En créant un serveur SMTP sortant à partir de zéro, vous pouvez obtenir un niveau d'informations sur la livraison des e-mails que la plupart des développeurs n'atteignent jamais.

Pour continuer, nous allons utiliser le langage de programmation Go, ainsi que les superbes bibliothèques de messagerie de Simon Ser. Nous démystifierons le processus, vous montrerons comment envoyer des e-mails à d'autres serveurs et expliquerons même les concepts clés tels que SPF, DKIM et DMARC permettant la délivrabilité.

À la fin, vous aurez au moins une compréhension plus approfondie de l'infrastructure de messagerie, même si vous ne disposez pas d'un serveur SMTP prêt pour la production.

Comprendre SMTP : les bases

Avant de plonger dans le code, passons en revue ce qu'est SMTP et comment il fonctionne. SMTP (Simple Mail Transfer Protocol) est le protocole standard pour l'envoi d'e-mails sur Internet. Il s'agit d'un protocole textuel relativement simple qui fonctionne sur un modèle client-serveur.

Commandes SMTP

Le protocole SMTP utilise des commandes. Chaque commande dans SMTP répond à un objectif spécifique dans le processus de transmission des e-mails. Ils permettent aux serveurs de se présenter, de spécifier les expéditeurs et les destinataires, de transférer le contenu réel des e-mails et de gérer la session de communication globale. Considérez ces commandes comme une conversation structurée entre deux serveurs de messagerie, où chaque commande représente une déclaration ou une question spécifique dans cette conversation.

Lorsque vous créez un serveur SMTP, vous créez essentiellement un programme capable de parler couramment cette langue, d'interpréter les commandes entrantes et de répondre de manière appropriée, ainsi que d'émettre les bonnes commandes lors de l'envoi d'e-mails.

Explorons les commandes SMTP les plus importantes pour voir comment se déroule cette conversation :

  • HELO/EHLO (Bonjour) : Cette commande lance la conversation SMTP. EHLO est la version SMTP étendue, prenant en charge des fonctionnalités supplémentaires. La syntaxe est le domaine HELO ou le domaine EHLO. Par exemple : EHLO exemple.com.
  • MAIL FROM : Cette commande spécifie l'adresse e-mail de l'expéditeur et démarre une nouvelle transaction de courrier. Il utilise la syntaxe MAIL FROM:. Un exemple serait MAIL FROM :.
  • RCPT TO : Utilisée pour spécifier l'adresse email du destinataire, cette commande peut être utilisée plusieurs fois pour plusieurs destinataires. La syntaxe est RCPT TO :. Par exemple : RCPT TO :.
  • DATA : Cette commande indique le début du contenu du message. Il se termine par une ligne ne contenant qu'un seul point (.). Après la commande DATA, vous saisirez le contenu du message. Par exemple:
DATA
From: john@example.com
To: jane@example.com
Subject: Hello

This is the body of the email.
.
  • QUITTER : Cette commande simple met fin à la session SMTP. Sa syntaxe est simplement QUITTER.
  • RSET (Reset) : La commande RSET abandonne la transaction de courrier en cours mais maintient la connexion ouverte. C'est utile pour recommencer sans initier une nouvelle connexion. La syntaxe est simplement RSET.
  • AUTH (Authentification) : Cette commande est utilisée pour authentifier le client auprès du serveur et prend en charge divers mécanismes d'authentification. La syntaxe est le mécanisme AUTH, par exemple : AUTH LOGIN.

Une conversation SMTP typique pourrait ressembler à ceci :

C: EHLO client.example.com
S: 250-smtp.example.com Hello client.example.com
S: 250-SIZE 14680064
S: 250-AUTH LOGIN PLAIN
S: 250 HELP

C: MAIL FROM:<sender@example.com>
S: 250 OK

C: RCPT TO:<recipient@example.com>
S: 250 OK

C: DATA
S: 354 Start mail input; end with <CRLF>.<CRLF>

C: From: sender@example.com
C: To: recipient@example.com
C: Subject: Test Email
C:
C: This is a test email.
C: .

S: 250 OK: queued as 12345

C: QUIT
S: 221 Bye

Authentification en SMTP

L'authentification est un aspect crucial de SMTP, en particulier pour les serveurs de messagerie sortants. Cela aide à empêcher toute utilisation non autorisée du serveur et réduit le spam. Il existe plusieurs méthodes d'authentification utilisées dans SMTP :

  1. PLAIN: This is a simple authentication method where the username and password are sent in clear text. It should only be used over encrypted connections.
  2. LOGIN: Similar to PLAIN, but the username and password are sent in separate commands.
  3. CRAM-MD5: This method uses a challenge-response mechanism to avoid sending the password in clear text.
  4. OAUTH2: This method allows the use of OAuth 2.0 tokens for authentication.

Here's an example of how PLAIN authentication looks in an SMTP conversation:

C: EHLO example.com
S: 250-STARTTLS
S: 250 AUTH PLAIN LOGIN
C: AUTH PLAIN AGVtYWlsQGV4YW1wbGUuY29tAHBhc3N3b3Jk
S: 235 2.7.0 Authentication successful

In this example, AGVtYWlsQGV4YW1wbGUuY29tAHBhc3N3b3Jk is the base64-encoded version of \0email@example.com\0password.

When implementing authentication in your SMTP server, you'll need to:

  1. Advertise supported authentication methods in response to the EHLO command.
  2. Implement handlers for the AUTH command that can process the chosen authentication method.
  3. Verify the provided credentials against your user database.
  4. Maintain the authenticated state for the duration of the SMTP session.

Now, let's move on to implementing these concepts in our Go SMTP server.

Achieving deliverability: DKIM, SPF, DMARC

Imagine sending a letter through the postal service without a return address or an official stamp. It might reach its destination, but there's a good chance it'll end up in the "suspicious mail" pile. In the digital world of email, we face a similar challenge.

How do we ensure our emails aren't just sent, but actually delivered and trusted?

Enter the holy trinity of email authentication: DKIM, SPF, and DMARC.

DKIM: Your Email's Digital Signature

DKIM (DomainKeys Identified Mail) is like a wax seal on a medieval letter. It proves the email hasn't been tampered with during transit.

How it works:

  • Your email server adds a digital signature to every outgoing email.
  • The receiving server checks this signature against a public key published in your DNS records.
  • If the signature is valid, the email passes the DKIM check.

Think of it as your email's passport, stamped and verified at each checkpoint.

Example DKIM DNS Record:

<selector>._domainkey.<domain>.<tld>. IN TXT "v=DKIM1; k=rsa; p=MIGfMA0GCSqGSIb3DQEBAQUAA4GNADCBiQKBgQC3QEKyU1fSma0axspqYK5iAj+54lsAg4qRRCnpKK68hawSd8zpsDz77ntGCR0X2mHVvkHbX6dX...oIDAQAB"

Here, 'selector' is a unique identifier for this DKIM key, and the long string is your public key.

SPF: The Guest List for Your Domain's Party

SPF (Sender Policy Framework) is like the bouncer at an exclusive club. It specifies which email servers are allowed to send emails on behalf of your domain.

How it works:

  • You publish a list of authorized IP addresses in your DNS records.
  • When an email arrives claiming to be from your domain, the receiving server checks if it came from an IP on your list.
  • If it matches, the email passes the SPF check.

It's like saying, "If the email didn't come from one of these guys, it's not with us!"

Example SPF DNS Record:

<domain>.<tld>. IN TXT "v=spf1 ip4:192.0.2.0/24 include:_spf.google.com ~all"

This record says:

  • Emails can come from IP addresses in the range 192.0.2.0 to 192.0.2.255.
  • Emails can also come from servers specified in Google's SPF record.
  • The ~all means to soft-fail emails from other sources (treat as suspicious but don't reject).

DMARC: The Rule Maker and Enforcer

DMARC (Domain-based Message Authentication, Reporting & Conformance) is the wise judge that decides what happens to emails that fail DKIM or SPF checks.

How it works:

  • You set a policy in your DNS records specifying how to handle emails that fail authentication.
  • Options range from "let it through anyway" to "reject it outright."
  • DMARC also provides reports on email authentication results, helping you monitor and improve your email security.

Think of DMARC as your email bouncer's rulebook and incident report.

Example DMARC DNS Record:

_dmarc.<domain>.<tld>. IN TXT "v=DMARC1; p=quarantine; rua=mailto:dmarc-reports@<domain>.<tld>"

This record says:

  • If an email fails DKIM and SPF checks, quarantine it (typically send to spam folder).
  • Send aggregate reports about email authentication results to dmarc-reports@example.com.

Why This Trinity Matters

Together, DKIM, SPF, and DMARC form a powerful shield against email spoofing and phishing. They tell receiving servers, "This email is really from us, sent by someone we trust, and here's what to do if something seems fishy."

Implementing this trinity not only improves your email deliverability but also protects your domain's reputation. It's like having a state-of-the-art security system for your email infrastructure.

As we build our SMTP server, keeping these authentication methods in mind will be crucial for ensuring our emails don't just get sent, but actually reach their destination and are trusted when they arrive. Remember, when implementing these records on a production domain, start with permissive policies and gradually tighten them as you confirm everything is working correctly.

Building the SMTP Server with Go

1. Project Initialization

First, let's create a new directory for our project and initialize a Go module:

mkdir go-smtp-server
cd go-smtp-server
go mod init github.com/yourusername/go-smtp-server

2. Installing Dependencies

We'll need a few dependencies for our SMTP server. Run the following commands:

go get github.com/emersion/go-smtp
go get github.com/emersion/go-sasl
go get github.com/emersion/go-msgauth

3. Basic SMTP Server Setup

  1. Create a new file named main.go and add the following code:
package main

import (
    "log"
    "time"
    "io"

    "github.com/emersion/go-smtp"
)

func main() {
    s := smtp.NewServer(&Backend{})

    s.Addr = ":2525"
    s.Domain = "localhost"
    s.WriteTimeout = 10 * time.Second
    s.ReadTimeout = 10 * time.Second
    s.MaxMessageBytes = 1024 * 1024
    s.MaxRecipients = 50
    s.AllowInsecureAuth = true

    log.Println("Starting server at", s.Addr)
    if err := s.ListenAndServe(); err != nil {
        log.Fatal(err)
    }
}

// Backend implements SMTP server methods.
type Backend struct{}

func (bkd *Backend) NewSession(_ *smtp.Conn) (smtp.Session, error) {
    return &Session{}, nil
}

// A Session is returned after EHLO.
type Session struct{}

// We'll implement the Session methods next

This creates an SMTP server, listening on the 2525 port, a convenient choice for development purposes, since this port doesn’t require administrative privileges, unlike the standard ports 25 (standard SMTP), 465 (TLS), 587 (STARTTLS).

  1. Implementing EHLO/HELO

The EHLO/HELO command is handled automatically by the go-smtp library. We don't need to implement it ourselves.

  1. Implementing MAIL FROM

Add this method to the Session struct:

func (s *Session) Mail(from string, opts *smtp.MailOptions) error {
    fmt.Println("Mail from:", from) s.From = from
    return nil
}

This method is called when the server receives a MAIL FROM command. It logs the sender's address and stores it in the session.

  1. Implementing RCPT TO

Add this method to the Session struct:

func (s *Session) Rcpt(to string) error {
    fmt.Println("Rcpt to:", to)
    s.To = append(s.To, to)
    return nil
}

This method is called for each RCPT TO command. It logs the recipient's address and adds it to the list of recipients for this session.

  1. Implementing DATA

Add this method to the Session struct:

import (
    "fmt"
    "io"
)

func (s *Session) Data(r io.Reader) error {
    if b, err := io.ReadAll(r); err != nil {
        return err
    } else {
        fmt.Println("Received message:", string(b))

        // Here you would typically process the email
        return nil
    }
}

This method is called when the server receives the DATA command. It reads the entire email message and logs it. In a real server, you would process the email here.

  1. Implementing AUTH

Add this method to the Session struct:

func (s *Session) AuthPlain(username, password string) error {
    if username != "testuser" || password != "testpass" {
        return fmt.Errorf("Invalid username or password")
    }

    return nil
}

This implements a basic authentication mechanism. Note that this is for demonstration purposes only and should not be used in production.

  1. Implementing RSET

Add this method to the Session struct:

func (s *Session) Reset() {
    s.From = "" s.To = []string{}
}

This method is called when the server receives a RSET command. It resets the session state.

  1. Implementing QUIT

Add this method to the Session struct:

func (s *Session) Logout() error {
    return nil
}

This method is called when the server receives a QUIT command. In this simple implementation, we don't need to do anything special.

  1. Sending Emails: MX Lookup, Port Selection, and DKIM Signing

Once we've received and processed an email, the next step is to send it to its destination. This involves two key steps: finding the recipient's mail server using MX (Mail Exchanger) records, and attempting to send the email using standard SMTP ports.

First, let's add a function to look up MX records:

import "net"

func lookupMX(domain string) ([]*net.MX, error) {
    mxRecords, err := net.LookupMX(domain)
    if err != nil {
        return nil, fmt.Errorf("Error looking up MX records: %v", err)
    }

    return mxRecords, nil
}

Next, let's create a function that attempts to send an email using different ports:

import (
    "crypto/tls"
    "net/smtp"
    "strings"
)

func sendMail(from string, to string, data []byte) error {
    domain := strings.Split(to, "@")[1]

    mxRecords, err := lookupMX(domain)
    if err != nil {
        return err
    }

    for _, mx := range mxRecords {
        host := mx.Host

        for _, port := range []int{25, 587, 465} {
            address := fmt.Sprintf("%s:%d", host, port)

            var c *smtp.Client

            var err error

            switch port {
            case 465:
                // SMTPS
                tlsConfig := &tls.Config{ServerName: host}
                conn, err := tls.Dial("tcp", address, tlsConfig)
                if err != nil {
                    continue
                }

                c, err = smtp.NewClient(conn, host)

            case 25, 587:
                // SMTP or SMTP with STARTTLS
                c, err = smtp.Dial(address)
                if err != nil {
                    continue
                }

                if port == 587 {
                    if err = c.StartTLS(&tls.Config{ServerName: host}); err != nil {
                        c.Close()
                        continue
                    }
                }
            }

            if err != nil {
                continue
            }

            // SMTP conversation
            if err = c.Mail(from); err != nil {
                c.Close()
                continue
            }

            if err = c.Rcpt(to); err != nil {
                c.Close()
                continue
            }

            w, err := c.Data()
            if err != nil {
                c.Close()
                continue
            }

            if _, err := w.Write(data); err != nil {
                c.Close()
                continue
            }

            err = w.Close()
            if err != nil {
                c.Close()
                continue
            }

            c.Quit()

            return nil
        }
    }

    return fmt.Errorf("Failed to send email to %s", to)
}

This function does the following:

  • Looks up the MX records for the recipient's domain.
  • For each MX record, it tries to connect using ports 25, 587, and 465 in that order.
  • It uses the appropriate connection method for each port:
    • Port 25: Plain SMTP
    • Port 587: SMTP with STARTTLS
    • Port 465: SMTPS (SMTP over TLS)
  • If a connection is successful, it attempts to send the email using the SMTP protocol.
  • If the email is sent successfully, it returns. Otherwise, it tries the next port or MX record.

Now, let's modify our Data method in the Session struct to use this new sendMail function:

func (s *Session) Data(r io.Reader) error {
    if data, err := io.ReadAll(r); err != nil {
        return err
    } else {
        fmt.Println("Received message:", string(data))
        for _, recipient := range s.To {
            if err := sendMail(s.From, recipient, data); err != nil {
                fmt.Printf("Failed to send email to %s: %v", recipient, err)
            } else {
                fmt.Printf("Email sent successfully to %s", recipient)
            }

        }

        return nil
    }
}

This implementation will attempt to send the received email to each recipient using the appropriate mail server and port.

Now, let's add DKIM signing to our email sending process. First, we need to import the necessary packages and set up our DKIM options:

import (
    // ... other imports ...
    "crypto/rsa"
    "crypto/x509"
    "encoding/pem"
    "github.com/emersion/go-msgauth/dkim"
)

// Load your DKIM private key
var dkimPrivateKey *rsa.PrivateKey

func init() {
    // Load your DKIM private key from a file
    privateKeyPEM, err := ioutil.ReadFile("path/to/your/private_key.pem")
    if err != nil {
        log.Fatalf("Failed to read private key: %v", err)
    }

    block, _ := pem.Decode(privateKeyPEM)
    if block == nil {
        log.Fatalf("Failed to parse PEM block containing the private key")
    }

    privateKey, err := x509.ParsePKCS1PrivateKey(block.Bytes)
    if err != nil {
        log.Fatalf("Failed to parse private key: %v", err)
    }

    dkimPrivateKey = privateKey
}

// DKIM options
var dkimOptions = &dkim.SignOptions{
    Domain: "example.com",
    Selector: "default",
    Signer: dkimPrivateKey,
}

Next, let's modify our sendMail function to include DKIM signing:

func sendMail(from string, to string, data []byte) error {
    // ... [previous MX lookup code] ...

    for _, mx := range mxRecords {
        host := mx.Host
        for _, port := range []int{25, 587, 465} {
            // ... [previous connection code] ...

            // DKIM sign the message
            var b bytes.Buffer
            if err := dkim.Sign(&b, bytes.NewReader(data), dkimOptions); err != nil {
                return fmt.Errorf("Failed to sign email with DKIM: %v", err)
            }
            signedData := b.Bytes()

            // SMTP conversation
            if err = c.Mail(from); err != nil {
                c.Close()
                continue
            }
            if err = c.Rcpt(to); err != nil {
                c.Close()
                continue
            }
            w, err := c.Data()
            if err != nil {
                c.Close()
                continue
            }
            _, err = w.Write(signedData) // Use the DKIM signed message
            if err != nil {
                c.Close()
                continue
            }
            err = w.Close()
            if err != nil {
                c.Close()
                continue
            }
            c.Quit()
            return nil
        }
    }

    return fmt.Errorf("Failed to send email to %s", to)
}

In this updated sendMail function:

  • We sign the email data with DKIM before sending it.
  • We use the signed data (signedData) when writing to the SMTP connection.

This implementation will add a DKIM signature to your outgoing emails, which will help improve deliverability and authenticity of your emails.

N'oubliez pas de remplacer "path/to/your/private_key.pem" par le chemin réel de votre clé privée DKIM, et mettez à jour le domaine et le sélecteur dans dkimOptions pour qu'ils correspondent à votre enregistrement DNS DKIM.

  1. Considérations et prochaines étapes

Bien que cette implémentation fournisse un serveur SMTP fonctionnel de base capable de recevoir et d'envoyer des e-mails, il existe plusieurs considérations importantes pour un serveur prêt pour la production :

  • Limitation du débit : mettez en œuvre une limitation du débit pour éviter les abus et vous protéger contre les bombardements par e-mail.
  • Prévention du spam : mettez en œuvre des mesures pour empêcher que votre serveur soit utilisé pour envoyer du spam.
  • Gestion des erreurs : améliorez la gestion et la journalisation des erreurs pour un meilleur débogage et une meilleure surveillance.
  • Gestion des files d'attente : implémentez un système de file d'attente pour la logique de nouvelle tentative lorsque l'envoi des e-mails échoue.

Conclusion

Nous espérons que vous avez beaucoup appris en lisant cet article. Pour en savoir plus sur l'envoi d'emails, n'hésitez pas à jeter un œil au dépôt GitHub de Ferdinand, et à explorer le code.

Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!

Déclaration:
Le contenu de cet article est volontairement contribué par les internautes et les droits d'auteur appartiennent à l'auteur original. Ce site n'assume aucune responsabilité légale correspondante. Si vous trouvez un contenu suspecté de plagiat ou de contrefaçon, veuillez contacter admin@php.cn