recherche
Maisonbase de donnéestutoriel mysqlNew Hash-based Sharding Feature in MongoDB 2.4

Lots of MongoDB users enjoy the flexibility of custom shard keys in organizing a sharded collection’s documents. For certain common workloads though, like key/value lookup, using the natural choice of _id as a shard key isn’t optimal bec

Lots of MongoDB users enjoy the flexibility of custom shard keys in organizing a sharded collection’s documents. For certain common workloads though, like key/value lookup, using the natural choice of _id as a shard key isn’t optimal because default ObjectId’s are ascending, resulting in poor write distribution. ?Creating randomized _ids or choosing another well-distributed field is always possible, but this adds complexity to an app and is another place where something could go wrong.

To help keep these simple workloads simple, in 2.4 MongoDB added the new Hash-based shard key feature. ?The idea behind Hash-based shard keys is that MongoDB will do the work to randomize data distribution for you, based on whatever kind of document identifier you like. ?So long as the identifier has a high cardinality, the documents in your collection will be spread evenly across the shards of your cluster. ?For heavy workloads with lots of individual document writes or reads (e.g. key/value), this is usually the best choice. ?For workloads where getting ranges of documents is more important (i.e. find recent documents from all users), other choices of shard key may be better suited.

Hash-based sharding in an existing collection

To start off with Hash-based sharding, you need the name of the collection you’d like to shard and the name of the hashed “identifier" field for the documents in the collection. ?For example, we might want to create a sharded “mydb.webcrawler" collection, where each document is usually found by a “url" field. ?We can populate the collection with sample data using:

shell$ wget http://en.wikipedia.org/wiki/Web_crawler -O web_crawler.html
shell$ mongo 
connecting to: /test
> use mydb
switched to db mydb
> cat("web_crawler.html").split("\n").forEach( function(line){
... var regex = /a href="http://blog.mongodb.org/post/\""([^\"]*)\"/; if (regex.test(line)) { db.webcrawler.insert({ "url" : regex.exec(line)[1] }); }})
> db.webcrawler.find()
...
{ "_id" : ObjectId("5162fba3ad5a8e56b7b36020"), "url" : "/wiki/OWASP" }
{ "_id" : ObjectId("5162fba3ad5a8e56b7b3603d"), "url" : "/wiki/Image_retrieval" }
{ "_id" : ObjectId("5162fba3ad5a8e56b7b3603e"), "url" : "/wiki/Video_search_engine" }
{ "_id" : ObjectId("5162fba3ad5a8e56b7b3603f"), "url" : "/wiki/Enterprise_search" }
{ "_id" : ObjectId("5162fba3ad5a8e56b7b36040"), "url" : "/wiki/Semantic_search" }
...

Just for this example, we multiply this data ~x2000 (otherwise we won’t get any pre-splitting in the collection because it’s too small):

> for (var i = 0; i 
<p><span>Next, we create a hashed index on this field:</span></p>
<pre class="brush:php;toolbar:false">> db.webcrawler.ensureIndex({ url : "hashed" })

As usual, the creation of the hashed index doesn’t prevent other types of indices from being created as well.

Then we shard the “mydb.webcrawler" collection using the same field as a Hash-based shard key:

> db.printShardingStatus(true)
--- Sharding Status ---
sharding version: {
  "_id" : 1,
  "version" : 3,
  "minCompatibleVersion" : 3,
  "currentVersion" : 4,
  "clusterId" : ObjectId("5163032a622c051263c7b8ce")
}
shards:
  {  "_id" : "test-rs0",  "host" : "test-rs0/nuwen:31100,nuwen:31101" }
  {  "_id" : "test-rs1",  "host" : "test-rs1/nuwen:31200,nuwen:31201" }
  {  "_id" : "test-rs2",  "host" : "test-rs2/nuwen:31300,nuwen:31301" }
  {  "_id" : "test-rs3",  "host" : "test-rs3/nuwen:31400,nuwen:31401" }
databases:
  {  "_id" : "admin",  "partitioned" : false,  "primary" : "config" }
  {  "_id" : "mydb",  "partitioned" : true,  "primary" : "test-rs0" }
      mydb.webcrawler
          shard key: { "url" : "hashed" }
          chunks:
              test-rs0    4
          { "url" : { "$minKey" : 1 } } -->> { "url" : NumberLong("-4837773290201122847") } on : test-rs0 { "t" : 1, "i" : 3 }
          { "url" : NumberLong("-4837773290201122847") } -->> { "url" : NumberLong("-2329535691089872938") } on : test-rs0 { "t" : 1, "i" : 4 }
          { "url" : NumberLong("-2329535691089872938") } -->> { "url" : NumberLong("3244151849123193853") } on : test-rs0 { "t" : 1, "i" : 1 }
          { "url" : NumberLong("3244151849123193853") } -->> { "url" : { "$maxKey" : 1 } } on : test-rs0 { "t" : 1, "i" : 2 }

you can see that the chunk boundaries are 64-bit integers (generated by hashing the “url" field). ?When inserts or queries target particular urls, the query can get routed using the url hash to the correct chunk.

Sharding a new collection

Above we’ve sharded an existing collection, which will result in all the chunks of a collection initially living on the same shard. ?The balancer takes care of moving the chunks around, as usual, until we get an even distribution of data.

Much of the time though, it’s better to shard the collection before we add our data - this way MongoDB doesn’t have to worry about moving around existing data. ?Users of sharded collections are familiar with pre-splitting - where empty chunks can be quickly balanced around a cluster before data is added. ?When sharding a new collection using Hash-based shard keys, MongoDB will take care of the presplitting for you. Similarly sized ranges of the Hash-based key are distributed to each existing shard, which means that no initial balancing is needed (unless of course new shards are added).

Let’s see what happens when we shard a new collection webcrawler_empty the same way:

> sh.stopBalancer()
Waiting for active hosts...
Waiting for the balancer lock...
Waiting again for active hosts after balancer is off...
> db.webcrawler_empty.ensureIndex({ url : "hashed" })
> sh.shardCollection("mydb.webcrawler_empty", { url : "hashed" })
{ "collectionsharded" : "mydb.webcrawler_empty", "ok" : 1 }
> db.printShardingStatus(true)
--- Sharding Status ---
...
      mydb.webcrawler_empty
          shard key: { "url" : "hashed" }
          chunks:
              test-rs0    2
              test-rs1    2
              test-rs2    2
              test-rs3    2
          { "url" : { "$minKey" : 1 } } -->> { "url" : NumberLong("-6917529027641081850") } on : test-rs0 { "t" : 4, "i" : 2 }
          { "url" : NumberLong("-6917529027641081850") } -->> { "url" : NumberLong("-4611686018427387900") } on : test-rs0 { "t" : 4, "i" : 3 }
          { "url" : NumberLong("-4611686018427387900") } -->> { "url" : NumberLong("-2305843009213693950") } on : test-rs1 { "t" : 4, "i" : 4 }
          { "url" : NumberLong("-2305843009213693950") } -->> { "url" : NumberLong(0) } on : test-rs1 { "t" : 4, "i" : 5 }
          { "url" : NumberLong(0) } -->> { "url" : NumberLong("2305843009213693950") } on : test-rs2 { "t" : 4, "i" : 6 }
          { "url" : NumberLong("2305843009213693950") } -->> { "url" : NumberLong("4611686018427387900") } on : test-rs2 { "t" : 4, "i" : 7 }
          { "url" : NumberLong("4611686018427387900") } -->> { "url" : NumberLong("6917529027641081850") } on : test-rs3 { "t" : 4, "i" : 8 }
          { "url" : NumberLong("6917529027641081850") } -->> { "url" : { "$maxKey" : 1 } } on : test-rs3 { "t" : 4, "i" : 9 }

As you can see, the new empty collection is already well-distributed and ready to use. ?Be aware though - any balancing currently in progress can interfere with moving the empty initial chunks off the initial shard, balancing will take priority (hence the initial stopBalancer step). Like before, eventually the balancer will distribute all empty chunks anyway, but if you are preparing for a immediate data load it’s probably best to stop the balancer beforehand.

That’s it - you now have a pre-split collection on four shards using Hash-based shard keys. ?Queries and updates on exact urls go to randomized shards and are balanced across the cluster:

> db.webcrawler_empty.find({ url: "/wiki/OWASP" }).explain()
{
  "clusteredType" : "ParallelSort",
  "shards" : {
      "test-rs2/nuwen:31300,nuwen:31301" : [ ... ]
...

However, the trade-off with Hash-based shard keys is that ranged queries and multi-updates must hit all shards:

> db.webcrawler_empty.find({ url: /^\/wiki\/OWASP/ }).explain()
{
  "clusteredType" : "ParallelSort",
  "shards" : {
      "test-rs0/nuwen:31100,nuwen:31101" : [ ... ],
     "test-rs1/nuwen:31200,nuwen:31201" : [ ... ],
     "test-rs2/nuwen:31300,nuwen:31301" : [ ... ],
     "test-rs3/nuwen:31400,nuwen:31401" : [ ... ]
...

Manual chunk assignment and other caveats

The core benefits of the new Hash-based shard keys are:

  • Easy setup of randomized shard key

  • Automated pre-splitting of empty collections

  • Better distribution of chunks on shards for isolated document writes and reads

The standard split and moveChunk functions do work with Hash-based shard keys, so it’s still possible to balance your collection’s chunks in any way you like. ?However, the usual “find” mechanism used to select chunks can behave a bit unexpectedly since the specifier is a document which is hashed to get the containing chunk. ?To keep things simple, just use the new “bounds” parameter when manually manipulating chunks of hashed collections (or all collections, if you prefer):

> use admin
> db.runCommand({ split : "mydb.webcrawler_empty", bounds : [{ "url" : NumberLong("2305843009213693950") }, { "url" : NumberLong("4611686018427387900") }] })
> db.runCommand({ moveChunk : "mydb.webcrawler_empty", bounds : [{ "url" : NumberLong("2305843009213693950") }, { "url" : NumberLong("4611686018427387900") }], to : "test-rs3" })

There are a few other caveats as well - in particular with tag-aware sharding. ?Tag-aware sharding is a feature we released in MongoDB 2.2, which allows you to attach labels to a subset of shards in a cluster. This is valuable for “pinning" collection data to particular shards (which might be hosted on more powerful hardware, for example). ?You can also tag ranges of a collection differently, such that a collection sharded by { “countryCode" : 1 } would have chunks only on servers in that country.

Hash-based shard keys are compatible with tag-aware sharding. ?As in any sharded collection, you may assign chunks to specific shards, but since the chunk ranges are based on the value of the randomized hash of the shard key instead of the shard key itself, this is usually only useful for tagging the whole range to a specific set of shards:

> sh.addShardTag("test-rs2", "DC1")
sh.addShardTag("test-rs3", "DC1")

The above commands assign a hypothetical data center tag “DC1” to shards -rs2 and -rs3, which could indicate that -rs2 and -rs3 are in a particular location. ?Then, by running:

> sh.addTagRange("mydb.webcrawler_empty", { url : MinKey }, { url : MaxKey }, "DC1" )

we indicate to the cluster that the mydb.webcrawler_empty collection should only be stored on “DC1” shards. ?After letting the balancer work:

> db.printShardingStatus(true)
--- Sharding Status ---
...
      mydb.webcrawler_empty
          shard key: { "url" : "hashed" }
          chunks:
              test-rs2    4
              test-rs3    4
          { "url" : { "$minKey" : 1 } } -->> { "url" : NumberLong("-6917529027641081850") } on : test-rs2 { "t" : 5, "i" : 0 }
          { "url" : NumberLong("-6917529027641081850") } -->> { "url" : NumberLong("-4611686018427387900") } on : test-rs3 { "t" : 6, "i" : 0 }
          { "url" : NumberLong("-4611686018427387900") } -->> { "url" : NumberLong("-2305843009213693950") } on : test-rs2 { "t" : 7, "i" : 0 }
          { "url" : NumberLong("-2305843009213693950") } -->> { "url" : NumberLong(0) } on : test-rs3 { "t" : 8, "i" : 0 }
          { "url" : NumberLong(0) } -->> { "url" : NumberLong("2305843009213693950") } on : test-rs2 { "t" : 4, "i" : 6 }
          { "url" : NumberLong("2305843009213693950") } -->> { "url" : NumberLong("4611686018427387900") } on : test-rs2 { "t" : 4, "i" : 7 }
          { "url" : NumberLong("4611686018427387900") } -->> { "url" : NumberLong("6917529027641081850") } on : test-rs3 { "t" : 4, "i" : 8 }
          { "url" : NumberLong("6917529027641081850") } -->> { "url" : { "$maxKey" : 1 } } on : test-rs3 { "t" : 4, "i" : 9 }
           tag: DC1  { "url" : { "$minKey" : 1 } } -->> { "url" : { "$maxKey" : 1 } }

Again, it doesn’t usually make a lot of sense to tag anything other than the full hashed shard key collection to particular shards - by design, there’s no real way to know or control what data is in what range.

Finally, remember that Hash-based shard keys can (right now) only distribute documents based on the value of a single field. ?So, continuing the example above, it isn’t directly possible to use “url" + “timestamp" as a Hash-based shard key without storing the combination in a single field in your application, for example:

url_and_ts : { url : <url>, timestamp : <timestamp> }</timestamp></url>

The sub-document will be hashed as a unit.

If you’re interested in learning more about Hash-based sharding, register for the Hash-based sharding feature demo on May 2.

Déclaration
Le contenu de cet article est volontairement contribué par les internautes et les droits d'auteur appartiennent à l'auteur original. Ce site n'assume aucune responsabilité légale correspondante. Si vous trouvez un contenu suspecté de plagiat ou de contrefaçon, veuillez contacter admin@php.cn
Quelles sont les procédures stockées dans MySQL?Quelles sont les procédures stockées dans MySQL?May 01, 2025 am 12:27 AM

Les procédures stockées sont des instructions SQL précompilées dans MySQL pour améliorer les performances et simplifier les opérations complexes. 1. Améliorer les performances: après la première compilation, les appels ultérieurs n'ont pas besoin d'être recompilés. 2. Améliorez la sécurité: restreignez l'accès à la table de données grâce au contrôle de l'autorisation. 3. Simplifier les opérations complexes: combinez plusieurs instructions SQL pour simplifier la logique de la couche d'application.

Comment fonctionne la mise en cache de requête dans MySQL?Comment fonctionne la mise en cache de requête dans MySQL?May 01, 2025 am 12:26 AM

Le principe de travail du cache de requête MySQL consiste à stocker les résultats de la requête sélectionnée, et lorsque la même requête est à nouveau exécutée, les résultats mis en cache sont directement renvoyés. 1) Le cache de requête améliore les performances de lecture de la base de données et trouve des résultats mis en cache grâce aux valeurs de hachage. 2) Configuration simple, définissez query_cache_type et query_cache_size dans le fichier de configuration mysql. 3) Utilisez le mot-clé SQL_NO_CACH pour désactiver le cache de requêtes spécifiques. 4) Dans les environnements de mise à jour à haute fréquence, le cache de requête peut provoquer des goulots d'étranglement des performances et doit être optimisé pour une utilisation par la surveillance et l'ajustement des paramètres.

Quels sont les avantages de l'utilisation de MySQL sur d'autres bases de données relationnelles?Quels sont les avantages de l'utilisation de MySQL sur d'autres bases de données relationnelles?May 01, 2025 am 12:18 AM

Les raisons pour lesquelles MySQL sont largement utilisées dans divers projets comprennent: 1. Haute performances et évolutivité, en prenant en charge plusieurs moteurs de stockage; 2. Facile à utiliser et à maintenir, configuration simple et outils riches; 3. Écosystème riche, attirant un grand nombre de supports d'outils communautaires et tiers; 4. Prise en charge multiplateforme, adaptée à plusieurs systèmes d'exploitation.

Comment gérez-vous les mises à niveau de la base de données dans MySQL?Comment gérez-vous les mises à niveau de la base de données dans MySQL?Apr 30, 2025 am 12:28 AM

Les étapes de mise à niveau de la base de données MySQL incluent: 1. Sauvegarder la base de données, 2. Arrêtez le service MySQL actuel, 3. Installez la nouvelle version de MySQL, 4. Démarrez la nouvelle version du service MySQL, 5. Récupérez la base de données. Des problèmes de compatibilité sont nécessaires pendant le processus de mise à niveau, et des outils avancés tels que Perconatoolkit peuvent être utilisés pour les tests et l'optimisation.

Quelles sont les différentes stratégies de sauvegarde que vous pouvez utiliser pour MySQL?Quelles sont les différentes stratégies de sauvegarde que vous pouvez utiliser pour MySQL?Apr 30, 2025 am 12:28 AM

Les politiques de sauvegarde MySQL incluent une sauvegarde logique, une sauvegarde physique, une sauvegarde incrémentielle, une sauvegarde basée sur la réplication et une sauvegarde cloud. 1. Logical Backup utilise MySQLDump pour exporter la structure et les données de la base de données, ce qui convient aux petites bases de données et aux migrations de versions. 2. Les sauvegardes physiques sont rapides et complètes en copie les fichiers de données, mais nécessitent la cohérence de la base de données. 3. La sauvegarde incrémentielle utilise la journalisation binaire pour enregistrer les modifications, ce qui convient aux grandes bases de données. 4. La sauvegarde basée sur la réplication réduit l'impact sur le système de production en sauvegarde du serveur. 5. Les sauvegardes cloud telles que Amazonrds fournissent des solutions d'automatisation, mais les coûts et le contrôle doivent être pris en compte. Lors de la sélection d'une politique, de la taille de la base de données, de la tolérance aux temps d'arrêt, du temps de récupération et des objectifs de points de récupération doit être pris en compte.

Qu'est-ce que le regroupement MySQL?Qu'est-ce que le regroupement MySQL?Apr 30, 2025 am 12:28 AM

MysqlclusteringenhancesdatabaserobustnessandscalabilityByDistritingDataacRossMultiplenodes.itUsEsthendBenginefordataReplication andfaultToleance, assurant la manière

Comment optimiser la conception du schéma de base de données pour les performances dans MySQL?Comment optimiser la conception du schéma de base de données pour les performances dans MySQL?Apr 30, 2025 am 12:27 AM

L'optimisation de la conception du schéma de la base de données dans MySQL peut améliorer les performances par les étapes suivantes: 1. Optimisation d'index: Créer des index sur les colonnes de requête communes, équilibrant la surcharge de la requête et insertion des mises à jour. 2. Optimisation de la structure du tableau: Réduisez la redondance des données par normalisation ou anti-normalisation et améliorez l'efficacité d'accès. 3. Sélection du type de données: utilisez des types de données appropriés, tels que INT au lieu de Varchar, pour réduire l'espace de stockage. 4. Partionnement et sous-table: Pour les volumes de données importants, utilisez le partitionnement et la sous-table pour disperser les données pour améliorer l'efficacité de la requête et de la maintenance.

Comment pouvez-vous optimiser les performances MySQL?Comment pouvez-vous optimiser les performances MySQL?Apr 30, 2025 am 12:26 AM

TOOPTIMIZEMYSQLPERFORMANCE, SuivreTheSestets: 1) Implémentation de PROPERIDEXINGTOSPEEDUPQUERIES, 2) Utiliser la manière dont la gamme ajustée en ligne

See all articles

Outils d'IA chauds

Undresser.AI Undress

Undresser.AI Undress

Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover

AI Clothes Remover

Outil d'IA en ligne pour supprimer les vêtements des photos.

Undress AI Tool

Undress AI Tool

Images de déshabillage gratuites

Clothoff.io

Clothoff.io

Dissolvant de vêtements AI

Video Face Swap

Video Face Swap

Échangez les visages dans n'importe quelle vidéo sans effort grâce à notre outil d'échange de visage AI entièrement gratuit !

Outils chauds

Listes Sec

Listes Sec

SecLists est le compagnon ultime du testeur de sécurité. Il s'agit d'une collection de différents types de listes fréquemment utilisées lors des évaluations de sécurité, le tout en un seul endroit. SecLists contribue à rendre les tests de sécurité plus efficaces et productifs en fournissant facilement toutes les listes dont un testeur de sécurité pourrait avoir besoin. Les types de listes incluent les noms d'utilisateur, les mots de passe, les URL, les charges utiles floues, les modèles de données sensibles, les shells Web, etc. Le testeur peut simplement extraire ce référentiel sur une nouvelle machine de test et il aura accès à tous les types de listes dont il a besoin.

Télécharger la version Mac de l'éditeur Atom

Télécharger la version Mac de l'éditeur Atom

L'éditeur open source le plus populaire

Version crackée d'EditPlus en chinois

Version crackée d'EditPlus en chinois

Petite taille, coloration syntaxique, ne prend pas en charge la fonction d'invite de code

PhpStorm version Mac

PhpStorm version Mac

Le dernier (2018.2.1) outil de développement intégré PHP professionnel

DVWA

DVWA

Damn Vulnerable Web App (DVWA) est une application Web PHP/MySQL très vulnérable. Ses principaux objectifs sont d'aider les professionnels de la sécurité à tester leurs compétences et leurs outils dans un environnement juridique, d'aider les développeurs Web à mieux comprendre le processus de sécurisation des applications Web et d'aider les enseignants/étudiants à enseigner/apprendre dans un environnement de classe. Application Web sécurité. L'objectif de DVWA est de mettre en pratique certaines des vulnérabilités Web les plus courantes via une interface simple et directe, avec différents degrés de difficulté. Veuillez noter que ce logiciel