Maison >base de données >tutoriel mysql >Hadoop2.2.0稳定版整合ZooKeeper(1)
Hadoop2.2.0HAzookeeper3.4.5 体系结构 错误处理 心血之作,在熟悉 hadoop2 架构的过程耽误了太长时间,在搭建环境过程遇到一些问题,这些问题一直卡在那儿,不得以解决,耽误了时间。最后,千寻万寻,把问题解决,多谢在过程提供帮助的大侠。这篇文章中,我
心血之作,在熟悉hadoop2架构的过程耽误了太长时间,在搭建环境过程遇到一些问题,这些问题一直卡在那儿,不得以解决,耽误了时间。最后,千寻万寻,把问题解决,多谢在过程提供帮助的大侠。这篇文章中,我也会把自己遇到的问题给列出来,帮助后来者进一步的学习。
http://blog.csdn.net/yczws1/article/details/23566383
本文主要通过对hadoop2.2.0集群配置的过程加以梳理,所有的步骤都是通过自己实际测试。文档的结构也是根据自己的实际情况而定,同时也会加入自己在实际过程遇到的问题。搭建环境过程不重要,重要点在于搭建过程中遇到的问题,解决问题的过程。
可能自己遇到的问题在一些由经验的老者手上都不是问题,但是这些问题着实让自己耽误了很长时间,最后问题解决也是费了太大心血。也通过这篇文档,表现出来,算是总结,为后者提供意见。
要想理解本节内容,首先需要了解hadoop1的体系结构。这里不过多的介绍基于hadoop1的体系架构,早在之前,曾搭建hadoop1.2.1伪分布式集群,详细请看hadoop学习(一)hadoop-1.2.1伪分布式配置及遇到的问题。这里主要介绍hadoop2的体系架构。
hadoop1的核心组成是两部分,即HDFS和MapReduce。在hadoop2中变为HDFS和Yarn。
新的HDFS中的NameNode不再是只有一个了,可以有多个(目前只支持2个)。每一个都有相同的职能。
这两个NameNode的地位如何:一个是active状态的,一个是standby状态的。当 集群运行时,只有active状态的NameNode是正常工作的,standby状态的NameNode是处于待命状态的,时刻同步active状态 NameNode的数据。一旦active状态的NameNode不能工作,通过手工或者自动切换,standby状态的NameNode就可以转变为 active状态的,就可以继续工作了。这就是高可靠。
当NameNode发生故障时,他们的数据如何保持一致:在这里,2个NameNode的数据其实是实时共享的。新HDFS采用了一种共享机制,JournalNode集群或者NFS进行共享。NFS是操作系统层面的,JournalNode是hadoop层面的,我们这里使用JournalNode集群进行数据共享。
如何实现NameNode的自动切换:这就需要使用ZooKeeper集群进行选择了。HDFS集群中的两个NameNode都在ZooKeeper中注册,当active状态的NameNode出故障时,ZooKeeper能检测到这种情况,它就会自动把standby状态的NameNode切换为active状态。
HDFS Federation(HDFS联盟):联盟的出现是有原因的。我们知道 NameNode是核心节点,维护着整个HDFS中的元数据信息,那么其容量是有限的,受制于服务器的内存空间。当NameNode服务器的内存装不下数据后,那么HDFS集群就装不下数据了,寿命也就到头了。因此其扩展性是受限的。HDFS联盟指的是有多个HDFS集群同时工作,那么其容量理论上就不受限了,夸张点说就是无限扩展。你可以理解成,一个总集群中,可以虚拟出两个或两个以上的单独的小集群,各个小集群之间数据是实时共享的。因为hadoop集群中已经不在单独存在namenode和datanode的概念。当一个其中一个小集群出故障,可以启动另一个小集群中的namenode节点,继续工作。因为数据是实时共享,即使namenode或datanode一起死掉,也不会影响整个集群的正常工作。
这点很重要,我们事先一定要先理解,节点之间任务是如何安排的。如果事先不理解为什么是这样,后面还会遇到更多的问题。这就需要,理解journalnode、zookeeper、datanode、namenode之间关系。自己也是在这上面耽误了很长时间,希望读者这点多注意下。
6台主机。
Journalnode和zookeeper保持奇数点,这点大家要有个概念,最少不少于3个节点。这里暂不讲解。
两个namenode上面已经说明,其实在hadoop2中几点之间namenode和datanode之间的划分已经不是那么明确了。这只是采用后4台机器作为namenode。这里也存在一个问题:如果把datanode和namenode放在一起,对数据的读取IO的效率肯定会有一定的影响,不同机器之间还是要通过网线和http请求完成数据之间的共享。实际中,两者是可以在一起。但是我不知道在一起和不在一起之间的主要区别在哪儿,上面的解释只是个人意见,如果读者有更好的意见可以留言,大家一起讨论。
在集群搭建之间,各主机设置静态IP、更改主机名称、主机之间ssh互联等相关设置这里不在多讲。如有需要,请参考:hadoop学习(五)Hadoop2.2.0完全分布式安装详解(1)配置文档。
下面就进入正式的集群的安装过程:
下面所有的过程都是在hadoop1机器上完成的,之后把文件复制到其他节点中。
下载地址:http://mirror.bit.edu.cn/apache/zookeeper/zookeeper-3.4.5/
解压到指定目录:这里目录:/home/tom/yarn/hadoop-2.2.0/app/
在hadoop目录中创建app目录。把文件解压到hadoop的app目录中,是为了以后整个项目可以整体移植。包括后面,我们会安装HBase、Hive等软件,都是解压到app的目录中。
拷贝命名zoo_sample.cfg 为zoo.cfg。我们一般不修改配置文件默认的示例文件,修改赋值其子文件。
编辑zoo.cfg
[plain] view plaincopy
在zookeeper的目录中,创建上述两个文件夹。进入zkdata文件夹,创建文件myid,填入1。这里写入的1,是在zoo.cfg文本中的server.1中的1。当我们把所有文件都配置完毕,我们把hadoop1中yarn目录复制到其它机器中,我们在修改每台机器中对应的myid文本,hadoop2中的myid写入2。其余节点,安照上面配置,依此写入相应的数字。Zkdatalog文件夹,是为了指定zookeeper产生日志指定相应的路径。
本机环境变量添是在/etc/profile目录中添加的。
[plain] view plaincopy
添加ZOOKEEPER_HOME/bin目录可以在原有的PATH后面加入
:$ZOOKEEPER_HOME/bin
关于环境变量修改/etc目录下的profile文件,也可以在根目录下的.bashrc目录下添加环境变量。这两者有什么区别:.bashrc是对当前目录用户的环境变量,profile文件是对所有用户都开放的目录。当系统加载文件中,先从profile找相应的路劲,如果没有会在.bashrc文件中找对应的环境变量路径。这两者大家稍至了解。
然后 source /etc/profile
上面3个步骤就安装zookeeper完毕。然后就是测试zookeeper,这个放到后面等hadoop1上整体配置完毕,scp到其它主机上后,再一起测试。
路径:http://apache.dataguru.cn/hadoop/common/hadoop-2.2.0/
解压到:/home/tom/yarn/下。其实这一步应该在解压zookeeper之前。不再多讲。
这里要修改配置文件一共包括6个,分别是在hadoop-env.sh、core-site.xml、hdfs-site.xml、mapred-site.xml、 yarn-site.xml和slaves。
修改文件的目录地址:/home/tom/yarn/hadoop-2.2.0/etc/hadoop/
添加jdk环境变量:
export JAVA_HOME=/usr/lib/jvm/jdk1.7.0_45
[plain] view plaincopy
[plain] view plaincopy
[plain] view plaincopy
[plain] view plaincopy
添加:这里指定哪台机器是datanode,这里指定4台机器。你甚至可以把集群所有机器都当做datanode
[plain] view plaincopy
环境变量的添加方法大都相同。这里给出我所有环境变量配置,大家可以根据自己的需要参考一下。
这里我们只要添加HADOOP_HOME环境变量。
[plain] view plaincopy
在hadoop的的根目录下(即:/home/tom目录下):因为我们所有的环境都装载在hadoop1的tom目录下。
执行:
[plain] view plaincopy
注意点:
1、因为我们是把整个yarn目录复制到其他节点中,zookeeper也包含在内。事先我们定义zookeeper是在1-5台机器上部署。这里我们虽然把zookeeper拷贝到6机器中,但是我们再zookeeper配置文件中没有配置6机器的节点,在启动zookeeper的时候,6机器也不需要启动。
2、现在要做的是进入zookeeper目录下的zkdata目录,修改myid文件:各个myid内容对应zoo.cfg文件中server对应的编号。
按照上面的3个大步骤,以及在注释中自己要创建的文件夹,指定相应的路径之后,整体的hadoop环境算是搭建完毕。下面就是等测试。
看似简单的不能再简单的搭建过程,这是你弄明白之后的事情。在从hadoop1到2之间的过度,主要的变化是namenode和mapreduce到yarn架构之间的变化。就在这简单的配置过程中,加上可参考网上众多配置教程,也耽误了太长时间。不是文件难配置,而是在出现问题,不知道怎么解决,就一直卡在那儿。咨询过一些大牛,但是他们也是搪塞,没有给出真正问题的原因。其中有一个问题,在QQ群中,咨询过一个人,从他那边才得到启发,把其中的一个问题给解决掉。这也是我们遇到的问题,没有一个平台,导致在一些别人看似不是问题的问题上耽误太长时间。