recherche
Maisonbase de donnéestutoriel mysql【原创】MySQL新旧版本ORDERBY处理方法

MySQL 的order by 涉及到三个参数: A. sort_buffer_size 排序缓存。 B. read_rnd_buffer_size 第二次排序缓存。 C. max_length_for_sort_data 带普通列的最大排序约束。 我来简单说下MySQL的排序规则。 假设查询语句select * from tb1 where 1 order by a ;

MySQL 的order by 涉及到三个参数:

A. sort_buffer_size 排序缓存。

B. read_rnd_buffer_size 第二次排序缓存。

C. max_length_for_sort_data 带普通列的最大排序约束。


我来简单说下MySQL的排序规则。

假设查询语句select * from tb1 where 1 order by  a ; 字段a没有建立索引;以上三个参数都足够大。

MySQL内部有两种排序规则:

第一种,是普通的排序。这种排序的特点是节省内存,但是最终会对磁盘有一次随机扫描。 大概主要过程如下:

1. 由于没有WHERE条件,所以直接对磁盘进行全表扫描,把字段a以及每行的物理ID(假设为TID)拿出来。然后把所有拿到的记录全部放到sort_buffer_size中进行排序。

2. 根据排好序的TID,从磁盘随机扫描所需要的所有记录,排好序后再次把所有必须的记录放到read_rnd_buffer_size中。

第二种,是冗余排序。这种排序的特点是不需要二次对磁盘进行随机扫描,但是缺点很明显,太浪费内存空间。

跟第一种不同的是,在第一步里拿到的不仅仅是字段a以及TID,而是把所有请求的记录全部拿到后,放到sort_buffer_size中进行排序。这样可以直接从缓存中返回记录给客户端,不用再次从磁盘上获取一次。

从MySQL 5.7 后,对第二种排序进行了打包压缩处理,避免太浪费内存。比如对于varchar(255)来说,实际存储为varchar(3)。那么相比之前的方式节约了好多内存,避免缓存区域不够时,建立磁盘临时表。


以下为简单的演示

mysql> use t_girl;
Database changed


三个参数的具体值:

mysql> select truncate(@@sort_buffer_size/1024/1024,2)||'MB' as 'sort_buffer_size',truncate(@@read_rnd_buffer_size/1024/1024,2)||'MB' as read_rnd_buffer_zie,@@max_length_for_sort_data as max_length_for_sort_data;
+------------------+---------------------+--------------------------+
| sort_buffer_size | read_rnd_buffer_zie | max_length_for_sort_data |
+------------------+---------------------+--------------------------+
| 2.00MB           | 2.00MB              |                     1024 |
+------------------+---------------------+--------------------------+
1 row in set (0.00 sec)


演示表的相关数据:

mysql> select table_name,table_rows,concat(truncate(data_length/1024/1024,2),'MB') as 'table_size' from information_schema.tables where table_name = 't1' and table_schema = 't_girl';
+------------+------------+------------+
| table_name | table_rows | table_size |
+------------+------------+------------+
| t1         |    2092640 | 74.60MB    |
+------------+------------+------------+
1 row in set (0.00 sec)



开启优化器跟踪:

mysql> SET OPTIMIZER_TRACE="enabled=on",END_MARKERS_IN_JSON=on;
Query OK, 0 rows affected (0.00 sec)


从数据字典里面拿到跟踪结果:

mysql> select * from information_schema.optimizer_trace\G
*************************** 1. row ***************************
                            QUERY: select * from t1 where id < 10 order by id
                            TRACE: {
  "steps": [
    {
      "join_preparation": {
        "select#": 1,
        "steps": [
          {
            "expanded_query": "/* select#1 */ select `t1`.`id` AS `id`,`t1`.`log_time` AS `log_time` from `t1` where (`t1`.`id` < 10) order by `t1`.`id`"
          }
        ] /* steps */
      } /* join_preparation */
    },
    {
      "join_optimization": {
        "select#": 1,
        "steps": [
          {
            "condition_processing": {
              "condition": "WHERE",
              "original_condition": "(`t1`.`id` < 10)",
              "steps": [
                {
                  "transformation": "equality_propagation",
                  "resulting_condition": "(`t1`.`id` < 10)"
                },
                {
                  "transformation": "constant_propagation",
                  "resulting_condition": "(`t1`.`id` < 10)"
                },
                {
                  "transformation": "trivial_condition_removal",
                  "resulting_condition": "(`t1`.`id` < 10)"
                }
              ] /* steps */
            } /* condition_processing */
          },
          {
            "table_dependencies": [
              {
                "table": "`t1`",
                "row_may_be_null": false,
                "map_bit": 0,
                "depends_on_map_bits": [
                ] /* depends_on_map_bits */
              }
            ] /* table_dependencies */
          },
          {
            "ref_optimizer_key_uses": [
            ] /* ref_optimizer_key_uses */
          },
          {
            "rows_estimation": [
              {
                "table": "`t1`",
                "table_scan": {
                  "rows": 2092640,
                  "cost": 4775
                } /* table_scan */
              }
            ] /* rows_estimation */
          },
          {
            "considered_execution_plans": [
              {
                "plan_prefix": [
                ] /* plan_prefix */,
                "table": "`t1`",
                "best_access_path": {
                  "considered_access_paths": [
                    {
                      "access_type": "scan",
                      "rows": 2.09e6,
                      "cost": 423303,
                      "chosen": true,
                      "use_tmp_table": true
                    }
                  ] /* considered_access_paths */
                } /* best_access_path */,
                "cost_for_plan": 423303,
                "rows_for_plan": 2.09e6,
                "sort_cost": 2.09e6,
                "new_cost_for_plan": 2.52e6,
                "chosen": true
              }
            ] /* considered_execution_plans */
          },
          {
            "attaching_conditions_to_tables": {
              "original_condition": "(`t1`.`id` < 10)",
              "attached_conditions_computation": [
              ] /* attached_conditions_computation */,
              "attached_conditions_summary": [
                {
                  "table": "`t1`",
                  "attached": "(`t1`.`id` < 10)"
                }
              ] /* attached_conditions_summary */
            } /* attaching_conditions_to_tables */
          },
          {
            "clause_processing": {
              "clause": "ORDER BY",
              "original_clause": "`t1`.`id`",
              "items": [
                {
                  "item": "`t1`.`id`"
                }
              ] /* items */,
              "resulting_clause_is_simple": true,
              "resulting_clause": "`t1`.`id`"
            } /* clause_processing */
          },
          {
            "refine_plan": [
              {
                "table": "`t1`",
                "access_type": "table_scan"
              }
            ] /* refine_plan */
          }
        ] /* steps */
      } /* join_optimization */
    },
    {
      "join_execution": {
        "select#": 1,
        "steps": [
          {
            "filesort_information": [
              {
                "direction": "asc",
                "table": "`t1`",
                "field": "id"
              }
            ] /* filesort_information */,
            "filesort_priority_queue_optimization": {
              "usable": false,
              "cause": "not applicable (no LIMIT)"
            } /* filesort_priority_queue_optimization */,
            "filesort_execution": [
            ] /* filesort_execution */,
            "filesort_summary": {
              "rows": 62390,
              "examined_rows": 2097152,
              "number_of_tmp_files": 0,
              "sort_buffer_size": 2097152,
              "sort_mode": "<sort_key, additional_fields>"
            } /* filesort_summary */
          }
        ] /* steps */
      } /* join_execution */
    }
  ] /* steps */
}
MISSING_BYTES_BEYOND_MAX_MEM_SIZE: 0
          INSUFFICIENT_PRIVILEGES: 0
1 row in set (0.00 sec)
mysql>


其中以上红色部分 表示用了第二种排序规则。

其他的两种 以及分别代表第一种和后续版本MySQL的提升, 自己体验去吧。


Déclaration
Le contenu de cet article est volontairement contribué par les internautes et les droits d'auteur appartiennent à l'auteur original. Ce site n'assume aucune responsabilité légale correspondante. Si vous trouvez un contenu suspecté de plagiat ou de contrefaçon, veuillez contacter admin@php.cn
MySQL: une introduction à la base de données la plus populaire au mondeMySQL: une introduction à la base de données la plus populaire au mondeApr 12, 2025 am 12:18 AM

MySQL est un système de gestion de la base de données relationnel open source, principalement utilisé pour stocker et récupérer les données rapidement et de manière fiable. Son principe de travail comprend les demandes des clients, la résolution de requête, l'exécution des requêtes et les résultats de retour. Des exemples d'utilisation comprennent la création de tables, l'insertion et la question des données et les fonctionnalités avancées telles que les opérations de jointure. Les erreurs communes impliquent la syntaxe SQL, les types de données et les autorisations, et les suggestions d'optimisation incluent l'utilisation d'index, les requêtes optimisées et la partition de tables.

L'importance de MySQL: stockage et gestion des donnéesL'importance de MySQL: stockage et gestion des donnéesApr 12, 2025 am 12:18 AM

MySQL est un système de gestion de base de données relationnel open source adapté au stockage, à la gestion, à la requête et à la sécurité des données. 1. Il prend en charge une variété de systèmes d'exploitation et est largement utilisé dans les applications Web et autres domaines. 2. Grâce à l'architecture client-serveur et à différents moteurs de stockage, MySQL traite efficacement les données. 3. L'utilisation de base comprend la création de bases de données et de tables, d'insertion, d'interrogation et de mise à jour des données. 4. L'utilisation avancée implique des requêtes complexes et des procédures stockées. 5. Les erreurs courantes peuvent être déboguées par le biais de la déclaration Explication. 6. L'optimisation des performances comprend l'utilisation rationnelle des indices et des instructions de requête optimisées.

Pourquoi utiliser MySQL? Avantages et avantagesPourquoi utiliser MySQL? Avantages et avantagesApr 12, 2025 am 12:17 AM

MySQL est choisi pour ses performances, sa fiabilité, sa facilité d'utilisation et son soutien communautaire. 1.MySQL fournit des fonctions de stockage et de récupération de données efficaces, prenant en charge plusieurs types de données et opérations de requête avancées. 2. Adoptez l'architecture client-serveur et plusieurs moteurs de stockage pour prendre en charge l'optimisation des transactions et des requêtes. 3. Facile à utiliser, prend en charge une variété de systèmes d'exploitation et de langages de programmation. 4. Avoir un solide soutien communautaire et fournir des ressources et des solutions riches.

Décrivez les mécanismes de verrouillage InNODB (verrous partagés, verrous exclusifs, verrous d'intention, verrous d'enregistrement, verrous d'écart, serrures à clé suivante).Décrivez les mécanismes de verrouillage InNODB (verrous partagés, verrous exclusifs, verrous d'intention, verrous d'enregistrement, verrous d'écart, serrures à clé suivante).Apr 12, 2025 am 12:16 AM

Les mécanismes de verrouillage d'InnoDB incluent des verrous partagés, des verrous exclusifs, des verrous d'intention, des verrous d'enregistrement, des serrures d'écart et des mèches suivantes. 1. Le verrouillage partagé permet aux transactions de lire des données sans empêcher d'autres transactions de lire. 2. Lock exclusif empêche les autres transactions de lire et de modifier les données. 3. Le verrouillage de l'intention optimise l'efficacité de verrouillage. 4. Enregistrement de l'indice de verrouillage d'enregistrement. 5. Écart d'enregistrement de l'indice des verrous de verrouillage de l'espace. 6. Le verrouillage de la touche suivante est une combinaison de verrouillage des enregistrements et de verrouillage de l'écart pour garantir la cohérence des données.

Quelles sont les causes communes des mauvaises performances de requête MySQL médiocres?Quelles sont les causes communes des mauvaises performances de requête MySQL médiocres?Apr 12, 2025 am 12:11 AM

Les principales raisons des mauvaises performances de requête MySQL incluent le non-utilisation d'index, la mauvaise sélection du plan d'exécution par l'optimiseur de requête, la conception de table déraisonnable, le volume de données excessif et la concurrence de verrouillage. 1. Aucun indice ne provoque une requête lente et l'ajout d'index ne peut améliorer considérablement les performances. 2. Utilisez la commande Expliquez pour analyser le plan de requête et découvrez l'erreur Optimizer. 3. Reconstruire la structure de la table et l'optimisation des conditions de jointure peut améliorer les problèmes de conception de la table. 4. Lorsque le volume de données est important, les stratégies de partitionnement et de division de table sont adoptées. 5. Dans un environnement de concurrence élevé, l'optimisation des transactions et des stratégies de verrouillage peut réduire la concurrence des verrous.

Quand devriez-vous utiliser un index composite par rapport à plusieurs index uniques uniques?Quand devriez-vous utiliser un index composite par rapport à plusieurs index uniques uniques?Apr 11, 2025 am 12:06 AM

Dans l'optimisation de la base de données, les stratégies d'indexation doivent être sélectionnées en fonction des exigences de requête: 1. Lorsque la requête implique plusieurs colonnes et que l'ordre des conditions est fixe, utilisez des index composites; 2. Lorsque la requête implique plusieurs colonnes mais que l'ordre des conditions n'est pas fixe, utilisez plusieurs index mono-colonnes. Les index composites conviennent à l'optimisation des requêtes multi-colonnes, tandis que les index mono-colonnes conviennent aux requêtes à colonne unique.

Comment identifier et optimiser les requêtes lentes dans MySQL? (Journal de requête lente, performance_schema)Comment identifier et optimiser les requêtes lentes dans MySQL? (Journal de requête lente, performance_schema)Apr 10, 2025 am 09:36 AM

Pour optimiser la requête lente MySQL, SlowQueryLog et Performance_Schema doivent être utilisées: 1. Activer SlowQueryLog et définir des seuils pour enregistrer la requête lente; 2. Utilisez Performance_schema pour analyser les détails de l'exécution de la requête, découvrir les goulots d'étranglement des performances et optimiser.

MySQL et SQL: Compétences essentielles pour les développeursMySQL et SQL: Compétences essentielles pour les développeursApr 10, 2025 am 09:30 AM

MySQL et SQL sont des compétences essentielles pour les développeurs. 1.MySQL est un système de gestion de base de données relationnel open source, et SQL est le langage standard utilisé pour gérer et exploiter des bases de données. 2.MySQL prend en charge plusieurs moteurs de stockage via des fonctions de stockage et de récupération de données efficaces, et SQL termine des opérations de données complexes via des instructions simples. 3. Les exemples d'utilisation comprennent les requêtes de base et les requêtes avancées, telles que le filtrage et le tri par condition. 4. Les erreurs courantes incluent les erreurs de syntaxe et les problèmes de performances, qui peuvent être optimisées en vérifiant les instructions SQL et en utilisant des commandes Explication. 5. Les techniques d'optimisation des performances incluent l'utilisation d'index, d'éviter la numérisation complète de la table, d'optimiser les opérations de jointure et d'améliorer la lisibilité du code.

See all articles

Outils d'IA chauds

Undresser.AI Undress

Undresser.AI Undress

Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover

AI Clothes Remover

Outil d'IA en ligne pour supprimer les vêtements des photos.

Undress AI Tool

Undress AI Tool

Images de déshabillage gratuites

Clothoff.io

Clothoff.io

Dissolvant de vêtements AI

AI Hentai Generator

AI Hentai Generator

Générez AI Hentai gratuitement.

Article chaud

R.E.P.O. Crystals d'énergie expliqués et ce qu'ils font (cristal jaune)
3 Il y a quelques semainesBy尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Meilleurs paramètres graphiques
3 Il y a quelques semainesBy尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Comment réparer l'audio si vous n'entendez personne
3 Il y a quelques semainesBy尊渡假赌尊渡假赌尊渡假赌
WWE 2K25: Comment déverrouiller tout dans Myrise
4 Il y a quelques semainesBy尊渡假赌尊渡假赌尊渡假赌

Outils chauds

Dreamweaver CS6

Dreamweaver CS6

Outils de développement Web visuel

Listes Sec

Listes Sec

SecLists est le compagnon ultime du testeur de sécurité. Il s'agit d'une collection de différents types de listes fréquemment utilisées lors des évaluations de sécurité, le tout en un seul endroit. SecLists contribue à rendre les tests de sécurité plus efficaces et productifs en fournissant facilement toutes les listes dont un testeur de sécurité pourrait avoir besoin. Les types de listes incluent les noms d'utilisateur, les mots de passe, les URL, les charges utiles floues, les modèles de données sensibles, les shells Web, etc. Le testeur peut simplement extraire ce référentiel sur une nouvelle machine de test et il aura accès à tous les types de listes dont il a besoin.

PhpStorm version Mac

PhpStorm version Mac

Le dernier (2018.2.1) outil de développement intégré PHP professionnel

ZendStudio 13.5.1 Mac

ZendStudio 13.5.1 Mac

Puissant environnement de développement intégré PHP

SublimeText3 Linux nouvelle version

SublimeText3 Linux nouvelle version

Dernière version de SublimeText3 Linux