Home  >  Article  >  php教程  >  计算距离的逻辑是从Android的提供的接口(Location.distanceBetw

计算距离的逻辑是从Android的提供的接口(Location.distanceBetw

WBOY
WBOYOriginal
2016-06-06 19:37:231381browse

参考了http://blog.sina.com.cn/s/blog_7b83134b0101i4xs.html 无 ?phpfunction computeDistance($lat1, $lon1, $lat2, $lon2) { // Based on http://www.ngs.noaa.gov/PUBS_LIB/inverse.pdf // using the "Inverse Formula" (section 4) $MAXITERS = 20; //

参考了http://blog.sina.com.cn/s/blog_7b83134b0101i4xs.html
<?php
function computeDistance($lat1, $lon1,
             $lat2, $lon2) {
             // Based on http://www.ngs.noaa.gov/PUBS_LIB/inverse.pdf
             // using the "Inverse Formula" (section 4)

             $MAXITERS = 20;
             // Convert lat/long to radians
             $lat1 *= pi() / 180.0;
             $lat2 *= pi() / 180.0;
             $lon1 *= pi() / 180.0;
             $lon2 *= pi() / 180.0;

             $a = 6378137.0; // WGS84 major axis
             $b = 6356752.3142; // WGS84 semi-major axis
             $f = ($a - $b) / $a;
             $aSqMinusBSqOverBSq = ($a * $a - $b * $b) / ($b * $b);

             $L = $lon2 - $lon1;
             $A = 0.0;
             $U1 = atan((1.0 - $f) * tan($lat1));
             $U2 = atan((1.0 - $f) * tan($lat2));

             $cosU1 = cos($U1);
             $cosU2 = cos($U2);
             $sinU1 = sin($U1);
             $sinU2 = sin($U2);
             $cosU1cosU2 = $cosU1 * $cosU2;
             $sinU1sinU2 = $sinU1 * $sinU2;

             $sigma = 0.0;
             $deltaSigma = 0.0;
             $cosSqAlpha = 0.0;
             $cos2SM = 0.0;
             $cosSigma = 0.0;
             $sinSigma = 0.0;
             $cosLambda = 0.0;
             $sinLambda = 0.0;

             $lambda = $L; // initial guess
             for ($iter = 0; $iter < $MAXITERS; $iter++) {
                 $lambdaOrig = $lambda;
                 $cosLambda = cos($lambda);
                 $sinLambda = sin($lambda);
                 $t1 = $cosU2 * $sinLambda;
                 $t2 = $cosU1 * $sinU2 - $sinU1 * $cosU2 * $cosLambda;
                 $sinSqSigma = $t1 * $t1 + $t2 * $t2; // (14)
                 $sinSigma = sqrt($sinSqSigma);
                 $cosSigma = $sinU1sinU2 + $cosU1cosU2 * $cosLambda; // (15)
                 $sigma = atan2($sinSigma, $cosSigma); // (16)
                 $sinAlpha = ($sinSigma == 0) ? 0.0 :
                     $cosU1cosU2 * $sinLambda / $sinSigma; // (17)
                 $cosSqAlpha = 1.0 - $sinAlpha * $sinAlpha;
                 $cos2SM = ($cosSqAlpha == 0) ? 0.0 :
                     $cosSigma - 2.0 * $sinU1sinU2 / $cosSqAlpha; // (18)

                 $uSquared = $cosSqAlpha * $aSqMinusBSqOverBSq; // defn
                 $A = 1 + ($uSquared / 16384.0) * // (3)
                     (4096.0 + $uSquared *
                      (-768 + $uSquared * (320.0 - 175.0 * $uSquared)));
                 $B = ($uSquared / 1024.0) * // (4)
                     (256.0 + $uSquared *
                      (-128.0 + $uSquared * (74.0 - 47.0 * $uSquared)));
                 $C = ($f / 16.0) *
                     $cosSqAlpha *
                     (4.0 + $f * (4.0 - 3.0 * $cosSqAlpha)); // (10)
                 $cos2SMSq = $cos2SM * $cos2SM;
                 $deltaSigma = $B * $sinSigma * // (6)
                     ($cos2SM + ($B / 4.0) *
                      ($cosSigma * (-1.0 + 2.0 * $cos2SMSq) -
                       ($B / 6.0) * $cos2SM *
                       (-3.0 + 4.0 * $sinSigma * $sinSigma) *
                       (-3.0 + 4.0 * $cos2SMSq)));

                 $lambda = $L +
                     (1.0 - $C) * $f * $sinAlpha *
                     ($sigma + $C * $sinSigma *
                      ($cos2SM + $C * $cosSigma *
                       (-1.0 + 2.0 * $cos2SM * $cos2SM))); // (11)

                 $delta = ($lambda - $lambdaOrig) / $lambda;
                 if (abs($delta) < 1.0e-12) {
                     break;
                 }
             }

             return  $b * $A * ($sigma - $deltaSigma);
}
echo computeDistance(34.8082342, 113.6125439, 34.8002478, 113.659779);
?>
Statement:
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn