在python numpy中,如果我用10^6长度随机生成的list生成numpy array,那么生成耗时0.1s, 但是得到这个array的mean只需要init的2%的时间。 而我自己implement的array得到mean需要十几秒。
所以numpy的array十分黑科技是应为:
1)用底层代码太厉害?
2)init的时候partially compute了某一些中间量?(应为求mean的时间比access慢,比O(n)快 )
如果是2的话能否讲一下大概思路(不需要用python O(n)就能得mean)?
感激不禁!
回复内容:
numpy的许多函数不仅是用C实现了,还使用了BLAS(一般Windows下link到MKL的,Linux下link到OpenBLAS)。基本上那些BLAS实现在每种操作上都进行了高度优化,例如使用AVX向量指令集,甚至能比你自己用C实现快上许多,更不要说和用Python实现的比。。 你用blas试试 numpy底层使用BLAS做向量,矩阵运算。像求平均值这种vector operation,很容易使用multi-threading或者vectorization来加速。比如MKL就有很多优化。<span class="n">a</span><span class="o">=</span><span class="p">[];</span><span class="n">s</span><span class="o">=</span><span class="mi">0</span><span class="p">;</span><span class="n">n</span><span class="o">=</span><span class="mi">1000000</span>
<span class="kn">from</span> <span class="nn">time</span> <span class="kn">import</span><span class="o">*</span>
<span class="kn">from</span> <span class="nn">math</span> <span class="kn">import</span><span class="o">*</span>
<span class="kn">from</span> <span class="nn">random</span> <span class="kn">import</span><span class="o">*</span>
<span class="n">st</span><span class="o">=</span><span class="n">clock</span><span class="p">()</span>
<span class="k">for</span> <span class="n">i</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="n">n</span><span class="p">):</span>
<span class="n">a</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">random</span><span class="p">())</span>
<span class="k">for</span> <span class="n">i</span> <span class="ow">in</span> <span class="n">a</span><span class="p">:</span><span class="n">s</span><span class="o">=</span><span class="n">s</span><span class="o">+</span><span class="n">i</span>
<span class="n">et</span><span class="o">=</span><span class="n">clock</span><span class="p">()</span>
<span class="k">print</span> <span class="s">"mean="</span><span class="p">,</span><span class="n">s</span><span class="o">/</span><span class="n">n</span><span class="p">,</span><span class="s">"time="</span><span class="p">,</span><span class="n">et</span><span class="o">-</span><span class="n">st</span><span class="p">,</span><span class="s">"seconds"</span>

Pythonusesahybridapproach,combiningcompilationtobytecodeandinterpretation.1)Codeiscompiledtoplatform-independentbytecode.2)BytecodeisinterpretedbythePythonVirtualMachine,enhancingefficiencyandportability.

ThekeydifferencesbetweenPython's"for"and"while"loopsare:1)"For"loopsareidealforiteratingoversequencesorknowniterations,while2)"while"loopsarebetterforcontinuinguntilaconditionismetwithoutpredefinediterations.Un

In Python, you can connect lists and manage duplicate elements through a variety of methods: 1) Use operators or extend() to retain all duplicate elements; 2) Convert to sets and then return to lists to remove all duplicate elements, but the original order will be lost; 3) Use loops or list comprehensions to combine sets to remove duplicate elements and maintain the original order.

ThefastestmethodforlistconcatenationinPythondependsonlistsize:1)Forsmalllists,the operatorisefficient.2)Forlargerlists,list.extend()orlistcomprehensionisfaster,withextend()beingmorememory-efficientbymodifyinglistsin-place.

ToinsertelementsintoaPythonlist,useappend()toaddtotheend,insert()foraspecificposition,andextend()formultipleelements.1)Useappend()foraddingsingleitemstotheend.2)Useinsert()toaddataspecificindex,thoughit'sslowerforlargelists.3)Useextend()toaddmultiple

Pythonlistsareimplementedasdynamicarrays,notlinkedlists.1)Theyarestoredincontiguousmemoryblocks,whichmayrequirereallocationwhenappendingitems,impactingperformance.2)Linkedlistswouldofferefficientinsertions/deletionsbutslowerindexedaccess,leadingPytho

Pythonoffersfourmainmethodstoremoveelementsfromalist:1)remove(value)removesthefirstoccurrenceofavalue,2)pop(index)removesandreturnsanelementataspecifiedindex,3)delstatementremoveselementsbyindexorslice,and4)clear()removesallitemsfromthelist.Eachmetho

Toresolvea"Permissiondenied"errorwhenrunningascript,followthesesteps:1)Checkandadjustthescript'spermissionsusingchmod xmyscript.shtomakeitexecutable.2)Ensurethescriptislocatedinadirectorywhereyouhavewritepermissions,suchasyourhomedirectory.


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

MinGW - Minimalist GNU for Windows
This project is in the process of being migrated to osdn.net/projects/mingw, you can continue to follow us there. MinGW: A native Windows port of the GNU Compiler Collection (GCC), freely distributable import libraries and header files for building native Windows applications; includes extensions to the MSVC runtime to support C99 functionality. All MinGW software can run on 64-bit Windows platforms.

MantisBT
Mantis is an easy-to-deploy web-based defect tracking tool designed to aid in product defect tracking. It requires PHP, MySQL and a web server. Check out our demo and hosting services.

VSCode Windows 64-bit Download
A free and powerful IDE editor launched by Microsoft

EditPlus Chinese cracked version
Small size, syntax highlighting, does not support code prompt function

WebStorm Mac version
Useful JavaScript development tools
