search
HomeBackend DevelopmentPython Tutorial使用yield可以做哪些很酷的事情?

使用生成器(Generator)和yield可以做哪些有趣的、酷酷的、让人意想不到的事情?
不限编程语言,例如python、JavaScript 等。

回复内容:

yield 在 JavaScript 中用的最多的可能就是结合 Promise/Thunk 等实现异步操作,比如大名鼎鼎的 tj/co · GitHub,所以已经不是「让人意想不到」的东西了。
理解 Generator 的特性后,实现一个玩具版的 co 还是很简单的:
function async(generator) {
  return new Promise(function(resolve, reject) {
    var g = generator()

    function next(val) {
      var result = g.next(val)
      var value = result.value

      if (!result.done) {
        value.then(next).catch(reject)
      }
      else {
        resolve(value)
      }
    }

    next()
  })
}
最典型的不就是async/await么?


不了解yield怎么实现async/await的,用C#代码试举一例:

IEnumerable<Action<Action>> SomeAsyncMethod()
{
  //blabla
  yield return await( asyncMethod, context );

  //blabla
  yield return await( asyncMethod, context );

  //blabla
}
可以做动画呀,效果如图:
<span class="c"># -*- coding: utf-8 -*-</span>
<span class="kn">import</span> <span class="nn">numpy</span> <span class="kn">as</span> <span class="nn">np</span>
<span class="kn">import</span> <span class="nn">matplotlib.pyplot</span> <span class="kn">as</span> <span class="nn">plt</span>
<span class="kn">import</span> <span class="nn">matplotlib.animation</span> <span class="kn">as</span> <span class="nn">animation</span>
<span class="kn">import</span> <span class="nn">math</span><span class="o">,</span> <span class="nn">random</span>
<span class="c"># 需要安装的库:Numpy和Matplotlib,推荐直接Anaconda</span>
<span class="n">fig</span><span class="p">,</span> <span class="n">axes1</span> <span class="o">=</span> <span class="n">plt</span><span class="o">.</span><span class="n">subplots</span><span class="p">()</span>
<span class="c"># 设置坐标轴长度</span>
<span class="n">axes1</span><span class="o">.</span><span class="n">set_ylim</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span> <span class="mf">1.4</span><span class="p">)</span>
<span class="n">axes1</span><span class="o">.</span><span class="n">set_xlim</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span> <span class="mi">1</span><span class="o">*</span><span class="n">np</span><span class="o">.</span><span class="n">pi</span><span class="o">/</span><span class="mf">0.01</span><span class="p">)</span>
<span class="c"># 设置初始x、y数值数组</span>
<span class="n">xdata</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">arange</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span> <span class="mi">2</span><span class="o">*</span><span class="n">np</span><span class="o">.</span><span class="n">pi</span><span class="p">,</span> <span class="mf">0.01</span><span class="p">)</span>
<span class="n">ydata</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">sin</span><span class="p">(</span><span class="n">xdata</span><span class="p">)</span>
<span class="c"># 获得线条</span>
<span class="n">line</span><span class="p">,</span> <span class="o">=</span> <span class="n">axes1</span><span class="o">.</span><span class="n">plot</span><span class="p">(</span><span class="n">xdata</span><span class="p">)</span>
<span class="c"># 毛刺倍率,从0开始增长,offset越大毛刺越大</span>
<span class="n">offset</span> <span class="o">=</span> <span class="mf">0.0</span>

<span class="c">#因为update的参数是调用函数data_gen,所以第一个默认参数不能是framenum</span>
<span class="k">def</span> <span class="nf">update</span><span class="p">(</span><span class="n">data</span><span class="p">):</span>
    <span class="k">global</span> <span class="n">offset</span>
    <span class="n">line</span><span class="o">.</span><span class="n">set_ydata</span><span class="p">(</span><span class="n">data</span><span class="p">)</span>
    <span class="k">return</span> <span class="n">line</span><span class="p">,</span>
<span class="c"># 每次生成10个随机数据</span>
<span class="c"># 每次变化整幅图的话,yield一个整图就行了</span>
<span class="k">def</span> <span class="nf">data_gen</span><span class="p">():</span>
    <span class="k">global</span> <span class="n">offset</span>
    <span class="k">while</span> <span class="bp">True</span><span class="p">:</span>
        <span class="n">length</span> <span class="o">=</span> <span class="nb">float</span><span class="p">(</span><span class="nb">len</span><span class="p">(</span><span class="n">xdata</span><span class="p">))</span>
        <span class="k">for</span> <span class="n">i</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="nb">len</span><span class="p">(</span><span class="n">xdata</span><span class="p">)):</span>
            <span class="n">ydata</span><span class="p">[</span><span class="n">i</span><span class="p">]</span><span class="o">=</span><span class="n">math</span><span class="o">.</span><span class="n">sin</span><span class="p">(</span><span class="n">xdata</span><span class="p">[</span><span class="n">i</span><span class="p">])</span><span class="o">+</span><span class="mf">0.2</span>
            <span class="k">if</span> <span class="n">i</span><span class="o">></span><span class="n">length</span><span class="o">/</span><span class="mf">18.0</span> <span class="ow">and</span> <span class="n">i</span><span class="o"><</span><span class="p">(</span><span class="n">length</span><span class="o">*</span><span class="mf">2.7</span><span class="o">/</span><span class="mf">6.0</span><span class="p">):</span>
                <span class="n">ydata</span><span class="p">[</span><span class="n">i</span><span class="p">]</span><span class="o">+=</span><span class="n">offset</span><span class="o">*</span><span class="p">(</span><span class="n">random</span><span class="o">.</span><span class="n">random</span><span class="p">()</span><span class="o">-</span><span class="mf">0.5</span><span class="p">)</span>
        <span class="n">offset</span> <span class="o">+=</span> <span class="mf">0.05</span>
        <span class="c">#可以设置offset的最大值</span>
        <span class="k">if</span> <span class="n">offset</span><span class="o">>=</span><span class="mf">0.5</span><span class="p">:</span>
           <span class="n">offset</span><span class="o">=</span><span class="mf">0.0</span>
        <span class="k">yield</span> <span class="n">ydata</span>
<span class="c"># 配置完毕,开始播放</span>
<span class="n">ani</span> <span class="o">=</span> <span class="n">animation</span><span class="o">.</span><span class="n">FuncAnimation</span><span class="p">(</span><span class="n">fig</span><span class="p">,</span> <span class="n">update</span><span class="p">,</span> <span class="n">data_gen</span><span class="p">,</span> <span class="n">interval</span><span class="o">=</span><span class="mi">800</span><span class="p">,</span> <span class="n">repeat</span><span class="o">=</span><span class="bp">True</span><span class="p">)</span>
<span class="n">plt</span><span class="o">.</span><span class="n">show</span><span class="p">()</span>
模拟离散事件,还有更简洁优雅的方式么

Overview — SimPy 3.0.8 documentation 这个问题就是给我准备的嘛

当有人声称在CPython里实现了一个沙盒的时候就可以用yield去逗他了,I was looking through the code and saw someone submitted this but didn't run it:...

酷到没工作... A Curious Course on Coroutines and Concurrency 可以写出一个并发的库
Generator Tricks for Systems Programmers 可以写个流处理框架 参见David Beazley大神几次PyCon的pdf,看完我简直是惊呆了。dabeaz.com 可以用来训练神经网络.
比如Lasagne/Lasagne · GitHub 中的一段示例代码:
<span class="k">def</span> <span class="nf">train</span><span class="p">(</span><span class="n">iter_funcs</span><span class="p">,</span> <span class="n">dataset</span><span class="p">,</span> <span class="n">batch_size</span><span class="o">=</span><span class="n">BATCH_SIZE</span><span class="p">):</span>
    <span class="sd">"""Train the model with `dataset` with mini-batch training. Each</span>
<span class="sd">       mini-batch has `batch_size` recordings.</span>
<span class="sd">    """</span>
    <span class="n">num_batches_train</span> <span class="o">=</span> <span class="n">dataset</span><span class="p">[</span><span class="s">'num_examples_train'</span><span class="p">]</span> <span class="o">//</span> <span class="n">batch_size</span>
    <span class="n">num_batches_valid</span> <span class="o">=</span> <span class="n">dataset</span><span class="p">[</span><span class="s">'num_examples_valid'</span><span class="p">]</span> <span class="o">//</span> <span class="n">batch_size</span>

    <span class="k">for</span> <span class="n">epoch</span> <span class="ow">in</span> <span class="n">itertools</span><span class="o">.</span><span class="n">count</span><span class="p">(</span><span class="mi">1</span><span class="p">):</span>
        <span class="n">batch_train_losses</span> <span class="o">=</span> <span class="p">[]</span>
        <span class="k">for</span> <span class="n">b</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="n">num_batches_train</span><span class="p">):</span>
            <span class="n">batch_train_loss</span> <span class="o">=</span> <span class="n">iter_funcs</span><span class="p">[</span><span class="s">'train'</span><span class="p">](</span><span class="n">b</span><span class="p">)</span>
            <span class="n">batch_train_losses</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">batch_train_loss</span><span class="p">)</span>

        <span class="n">avg_train_loss</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">mean</span><span class="p">(</span><span class="n">batch_train_losses</span><span class="p">)</span>

        <span class="n">batch_valid_losses</span> <span class="o">=</span> <span class="p">[]</span>
        <span class="n">batch_valid_accuracies</span> <span class="o">=</span> <span class="p">[]</span>
        <span class="k">for</span> <span class="n">b</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="n">num_batches_valid</span><span class="p">):</span>
            <span class="n">batch_valid_loss</span><span class="p">,</span> <span class="n">batch_valid_accuracy</span> <span class="o">=</span> <span class="n">iter_funcs</span><span class="p">[</span><span class="s">'valid'</span><span class="p">](</span><span class="n">b</span><span class="p">)</span>
            <span class="n">batch_valid_losses</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">batch_valid_loss</span><span class="p">)</span>
            <span class="n">batch_valid_accuracies</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">batch_valid_accuracy</span><span class="p">)</span>

        <span class="n">avg_valid_loss</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">mean</span><span class="p">(</span><span class="n">batch_valid_losses</span><span class="p">)</span>
        <span class="n">avg_valid_accuracy</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">mean</span><span class="p">(</span><span class="n">batch_valid_accuracies</span><span class="p">)</span>

        <span class="k">yield</span> <span class="p">{</span>
            <span class="s">'number'</span><span class="p">:</span> <span class="n">epoch</span><span class="p">,</span>
            <span class="s">'train_loss'</span><span class="p">:</span> <span class="n">avg_train_loss</span><span class="p">,</span>
            <span class="s">'valid_loss'</span><span class="p">:</span> <span class="n">avg_valid_loss</span><span class="p">,</span>
            <span class="s">'valid_accuracy'</span><span class="p">:</span> <span class="n">avg_valid_accuracy</span><span class="p">,</span>
        <span class="p">}</span>
tornado就是使用generator实现的协程(coroutine)模型,再配合event loop实现高并发的 使用迭代器遍历二叉树。
Statement
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn
es6数组怎么去掉重复并且重新排序es6数组怎么去掉重复并且重新排序May 05, 2022 pm 07:08 PM

去掉重复并排序的方法:1、使用“Array.from(new Set(arr))”或者“[…new Set(arr)]”语句,去掉数组中的重复元素,返回去重后的新数组;2、利用sort()对去重数组进行排序,语法“去重数组.sort()”。

JavaScript的Symbol类型、隐藏属性及全局注册表详解JavaScript的Symbol类型、隐藏属性及全局注册表详解Jun 02, 2022 am 11:50 AM

本篇文章给大家带来了关于JavaScript的相关知识,其中主要介绍了关于Symbol类型、隐藏属性及全局注册表的相关问题,包括了Symbol类型的描述、Symbol不会隐式转字符串等问题,下面一起来看一下,希望对大家有帮助。

原来利用纯CSS也能实现文字轮播与图片轮播!原来利用纯CSS也能实现文字轮播与图片轮播!Jun 10, 2022 pm 01:00 PM

怎么制作文字轮播与图片轮播?大家第一想到的是不是利用js,其实利用纯CSS也能实现文字轮播与图片轮播,下面来看看实现方法,希望对大家有所帮助!

JavaScript对象的构造函数和new操作符(实例详解)JavaScript对象的构造函数和new操作符(实例详解)May 10, 2022 pm 06:16 PM

本篇文章给大家带来了关于JavaScript的相关知识,其中主要介绍了关于对象的构造函数和new操作符,构造函数是所有对象的成员方法中,最早被调用的那个,下面一起来看一下吧,希望对大家有帮助。

JavaScript面向对象详细解析之属性描述符JavaScript面向对象详细解析之属性描述符May 27, 2022 pm 05:29 PM

本篇文章给大家带来了关于JavaScript的相关知识,其中主要介绍了关于面向对象的相关问题,包括了属性描述符、数据描述符、存取描述符等等内容,下面一起来看一下,希望对大家有帮助。

javascript怎么移除元素点击事件javascript怎么移除元素点击事件Apr 11, 2022 pm 04:51 PM

方法:1、利用“点击元素对象.unbind("click");”方法,该方法可以移除被选元素的事件处理程序;2、利用“点击元素对象.off("click");”方法,该方法可以移除通过on()方法添加的事件处理程序。

整理总结JavaScript常见的BOM操作整理总结JavaScript常见的BOM操作Jun 01, 2022 am 11:43 AM

本篇文章给大家带来了关于JavaScript的相关知识,其中主要介绍了关于BOM操作的相关问题,包括了window对象的常见事件、JavaScript执行机制等等相关内容,下面一起来看一下,希望对大家有帮助。

foreach是es6里的吗foreach是es6里的吗May 05, 2022 pm 05:59 PM

foreach不是es6的方法。foreach是es3中一个遍历数组的方法,可以调用数组的每个元素,并将元素传给回调函数进行处理,语法“array.forEach(function(当前元素,索引,数组){...})”;该方法不处理空数组。

See all articles

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

AI Hentai Generator

AI Hentai Generator

Generate AI Hentai for free.

Hot Article

R.E.P.O. Energy Crystals Explained and What They Do (Yellow Crystal)
2 weeks agoBy尊渡假赌尊渡假赌尊渡假赌
Repo: How To Revive Teammates
4 weeks agoBy尊渡假赌尊渡假赌尊渡假赌
Hello Kitty Island Adventure: How To Get Giant Seeds
4 weeks agoBy尊渡假赌尊渡假赌尊渡假赌

Hot Tools

Dreamweaver CS6

Dreamweaver CS6

Visual web development tools

SecLists

SecLists

SecLists is the ultimate security tester's companion. It is a collection of various types of lists that are frequently used during security assessments, all in one place. SecLists helps make security testing more efficient and productive by conveniently providing all the lists a security tester might need. List types include usernames, passwords, URLs, fuzzing payloads, sensitive data patterns, web shells, and more. The tester can simply pull this repository onto a new test machine and he will have access to every type of list he needs.

MantisBT

MantisBT

Mantis is an easy-to-deploy web-based defect tracking tool designed to aid in product defect tracking. It requires PHP, MySQL and a web server. Check out our demo and hosting services.

mPDF

mPDF

mPDF is a PHP library that can generate PDF files from UTF-8 encoded HTML. The original author, Ian Back, wrote mPDF to output PDF files "on the fly" from his website and handle different languages. It is slower than original scripts like HTML2FPDF and produces larger files when using Unicode fonts, but supports CSS styles etc. and has a lot of enhancements. Supports almost all languages, including RTL (Arabic and Hebrew) and CJK (Chinese, Japanese and Korean). Supports nested block-level elements (such as P, DIV),

ZendStudio 13.5.1 Mac

ZendStudio 13.5.1 Mac

Powerful PHP integrated development environment