search
HomeBackend DevelopmentPython TutorialPython对两个有序列表进行合并和排序的例子

假设有2个有序列表l1、l2,如何效率比较高的将2个list合并并保持有序状态,这里默认排序是正序。

思路是比较简单的,无非是依次比较l1和l2头部第一个元素,将比较小的放在一个新的列表中,以此类推,直到所有的元素都被放到新的列表中。

考虑2个列表l1 = [2], l2 = [1],如何将他们合并呢?(注意:下面实现会改变l1和l2本来的值)

代码如下:


def signle_merge_sort(l1, l2):
    tmp = []
    if l1[0]         tmp.append(l1[0])
        tmp.extend(l2)
        del l2[0]
    else:
        tmp.append(l2[0])
        tmp.extend(l1)
        del l1[0]
    return tmp


这真的只能处理一个元素的情形,还不能解决问题,不过好歹我们有一个大概的思路了。如果有列表中2个元素,上面的方法就不行了。我们需要解决边界判断问题,即当l1或者l2有一个为空的时,将剩下的一个list加到排序结果的尾部。然后确保函数每次调用只处理一个元素,通过递归来解决问题。

代码如下:


def recursion_merge_sort1(l1, l2):
    tmp = []
    if len(l1) == 0:
        tmp.extend(l2)
        return tmp
    elif len(l2) == 0:
        tmp.extend(l1)
        return tmp
    else:
        if l1[0]             tmp.append(l1[0])
            del l1[0]
        else:
            tmp.append(l2[0])
            del l2[0]
        tmp += recursion_merge_sort1(l1, l2)
    return tmp


上面的程序有2个问题:if判断太多;每次都要初始化tmp,对内存使用似乎不太友好。考虑到程序在l1或者l2有一个为空的时候就终止,可以稍微改写一下:

代码如下:


def _recursion_merge_sort2(l1, l2, tmp):
    if len(l1) == 0 or len(l2) == 0:
        tmp.extend(l1)
        tmp.extend(l2)
        return tmp
    else:
        if l1[0]             tmp.append(l1[0])
            del l1[0]
        else:
            tmp.append(l2[0])
            del l2[0]
        return _recursion_merge_sort2(l1, l2, tmp)

def recursion_merge_sort2(l1, l2):
    return _recursion_merge_sort2(l1, l2, [])


但是对于Python而言,即使是尾递归,效率也不是那么高,为了避免爆栈,通常还是会用循环来做,再稍微改写一下:

代码如下:


def loop_merge_sort(l1, l2):
    tmp = []
    while len(l1) > 0 and len(l2) > 0:
        if l1[0]             tmp.append(l1[0])
            del l1[0]
        else:
            tmp.append(l2[0])
            del l2[0]
    tmp.extend(l1)
    tmp.extend(l2)
    return tmp


今天栽了个坑,好好反省,就是这样。
Statement
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn
Python vs. C  : Learning Curves and Ease of UsePython vs. C : Learning Curves and Ease of UseApr 19, 2025 am 12:20 AM

Python is easier to learn and use, while C is more powerful but complex. 1. Python syntax is concise and suitable for beginners. Dynamic typing and automatic memory management make it easy to use, but may cause runtime errors. 2.C provides low-level control and advanced features, suitable for high-performance applications, but has a high learning threshold and requires manual memory and type safety management.

Python vs. C  : Memory Management and ControlPython vs. C : Memory Management and ControlApr 19, 2025 am 12:17 AM

Python and C have significant differences in memory management and control. 1. Python uses automatic memory management, based on reference counting and garbage collection, simplifying the work of programmers. 2.C requires manual management of memory, providing more control but increasing complexity and error risk. Which language to choose should be based on project requirements and team technology stack.

Python for Scientific Computing: A Detailed LookPython for Scientific Computing: A Detailed LookApr 19, 2025 am 12:15 AM

Python's applications in scientific computing include data analysis, machine learning, numerical simulation and visualization. 1.Numpy provides efficient multi-dimensional arrays and mathematical functions. 2. SciPy extends Numpy functionality and provides optimization and linear algebra tools. 3. Pandas is used for data processing and analysis. 4.Matplotlib is used to generate various graphs and visual results.

Python and C  : Finding the Right ToolPython and C : Finding the Right ToolApr 19, 2025 am 12:04 AM

Whether to choose Python or C depends on project requirements: 1) Python is suitable for rapid development, data science, and scripting because of its concise syntax and rich libraries; 2) C is suitable for scenarios that require high performance and underlying control, such as system programming and game development, because of its compilation and manual memory management.

Python for Data Science and Machine LearningPython for Data Science and Machine LearningApr 19, 2025 am 12:02 AM

Python is widely used in data science and machine learning, mainly relying on its simplicity and a powerful library ecosystem. 1) Pandas is used for data processing and analysis, 2) Numpy provides efficient numerical calculations, and 3) Scikit-learn is used for machine learning model construction and optimization, these libraries make Python an ideal tool for data science and machine learning.

Learning Python: Is 2 Hours of Daily Study Sufficient?Learning Python: Is 2 Hours of Daily Study Sufficient?Apr 18, 2025 am 12:22 AM

Is it enough to learn Python for two hours a day? It depends on your goals and learning methods. 1) Develop a clear learning plan, 2) Select appropriate learning resources and methods, 3) Practice and review and consolidate hands-on practice and review and consolidate, and you can gradually master the basic knowledge and advanced functions of Python during this period.

Python for Web Development: Key ApplicationsPython for Web Development: Key ApplicationsApr 18, 2025 am 12:20 AM

Key applications of Python in web development include the use of Django and Flask frameworks, API development, data analysis and visualization, machine learning and AI, and performance optimization. 1. Django and Flask framework: Django is suitable for rapid development of complex applications, and Flask is suitable for small or highly customized projects. 2. API development: Use Flask or DjangoRESTFramework to build RESTfulAPI. 3. Data analysis and visualization: Use Python to process data and display it through the web interface. 4. Machine Learning and AI: Python is used to build intelligent web applications. 5. Performance optimization: optimized through asynchronous programming, caching and code

Python vs. C  : Exploring Performance and EfficiencyPython vs. C : Exploring Performance and EfficiencyApr 18, 2025 am 12:20 AM

Python is better than C in development efficiency, but C is higher in execution performance. 1. Python's concise syntax and rich libraries improve development efficiency. 2.C's compilation-type characteristics and hardware control improve execution performance. When making a choice, you need to weigh the development speed and execution efficiency based on project needs.

See all articles

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

AI Hentai Generator

AI Hentai Generator

Generate AI Hentai for free.

Hot Tools

Notepad++7.3.1

Notepad++7.3.1

Easy-to-use and free code editor

SublimeText3 Mac version

SublimeText3 Mac version

God-level code editing software (SublimeText3)

Dreamweaver Mac version

Dreamweaver Mac version

Visual web development tools

WebStorm Mac version

WebStorm Mac version

Useful JavaScript development tools

Zend Studio 13.0.1

Zend Studio 13.0.1

Powerful PHP integrated development environment