推荐系统中经常需要处理类似user_id, item_id, rating这样的数据,其实就是数学里面的稀疏矩阵,scipy中提供了sparse模块来解决这个问题,但scipy.sparse有很多问题不太合用:
1、不能很好的同时支持data[i, ...]、data[..., j]、data[i, j]快速切片;
2、由于数据保存在内存中,不能很好的支持海量数据处理。
要支持data[i, ...]、data[..., j]的快速切片,需要i或者j的数据集中存储;同时,为了保存海量的数据,也需要把数据的一部分放在硬盘上,用内存做buffer。这里的解决方案比较简单,用一个类Dict的东西来存储数据,对于某个i(比如9527),它的数据保存在dict['i9527']里面,同样的,对于某个j(比如3306),它的全部数据保存在dict['j3306']里面,需要取出data[9527, ...]的时候,只要取出dict['i9527']即可,dict['i9527']原本是一个dict对象,储存某个j对应的值,为了节省内存空间,我们把这个dict以二进制字符串形式存储,直接上代码:
代码如下:
'''
Sparse Matrix
'''
import struct
import numpy as np
import bsddb
from cStringIO import StringIO
class DictMatrix():
def __init__(self, container = {}, dft = 0.0):
self._data = container
self._dft = dft
self._nums = 0
def __setitem__(self, index, value):
try:
i, j = index
except:
raise IndexError('invalid index')
ik = ('i%d' % i)
# 为了节省内存,我们把j, value打包成字二进制字符串
ib = struct.pack('if', j, value)
jk = ('j%d' % j)
jb = struct.pack('if', i, value)
try:
self._data[ik] += ib
except:
self._data[ik] = ib
try:
self._data[jk] += jb
except:
self._data[jk] = jb
self._nums += 1
def __getitem__(self, index):
try:
i, j = index
except:
raise IndexError('invalid index')
if (isinstance(i, int)):
ik = ('i%d' % i)
if not self._data.has_key(ik): return self._dft
ret = dict(np.fromstring(self._data[ik], dtype = 'i4,f4'))
if (isinstance(j, int)): return ret.get(j, self._dft)
if (isinstance(j, int)):
jk = ('j%d' % j)
if not self._data.has_key(jk): return self._dft
ret = dict(np.fromstring(self._data[jk], dtype = 'i4,f4'))
return ret
def __len__(self):
return self._nums
def __iter__(
测试代码:
代码如下:
import timeit
timeit.Timer('foo = __main__.data[9527, ...]', 'import __main__').timeit(number = 1000)
消耗1.4788秒,大概读取一条数据1.5ms。
采用类Dict来存储数据的另一个好处是你可以随便用内存Dict或者其他任何形式的DBM,甚至传说中的Tokyo Cabinet….
好了,码完收工。

Python is easier to learn and use, while C is more powerful but complex. 1. Python syntax is concise and suitable for beginners. Dynamic typing and automatic memory management make it easy to use, but may cause runtime errors. 2.C provides low-level control and advanced features, suitable for high-performance applications, but has a high learning threshold and requires manual memory and type safety management.

Python and C have significant differences in memory management and control. 1. Python uses automatic memory management, based on reference counting and garbage collection, simplifying the work of programmers. 2.C requires manual management of memory, providing more control but increasing complexity and error risk. Which language to choose should be based on project requirements and team technology stack.

Python's applications in scientific computing include data analysis, machine learning, numerical simulation and visualization. 1.Numpy provides efficient multi-dimensional arrays and mathematical functions. 2. SciPy extends Numpy functionality and provides optimization and linear algebra tools. 3. Pandas is used for data processing and analysis. 4.Matplotlib is used to generate various graphs and visual results.

Whether to choose Python or C depends on project requirements: 1) Python is suitable for rapid development, data science, and scripting because of its concise syntax and rich libraries; 2) C is suitable for scenarios that require high performance and underlying control, such as system programming and game development, because of its compilation and manual memory management.

Python is widely used in data science and machine learning, mainly relying on its simplicity and a powerful library ecosystem. 1) Pandas is used for data processing and analysis, 2) Numpy provides efficient numerical calculations, and 3) Scikit-learn is used for machine learning model construction and optimization, these libraries make Python an ideal tool for data science and machine learning.

Is it enough to learn Python for two hours a day? It depends on your goals and learning methods. 1) Develop a clear learning plan, 2) Select appropriate learning resources and methods, 3) Practice and review and consolidate hands-on practice and review and consolidate, and you can gradually master the basic knowledge and advanced functions of Python during this period.

Key applications of Python in web development include the use of Django and Flask frameworks, API development, data analysis and visualization, machine learning and AI, and performance optimization. 1. Django and Flask framework: Django is suitable for rapid development of complex applications, and Flask is suitable for small or highly customized projects. 2. API development: Use Flask or DjangoRESTFramework to build RESTfulAPI. 3. Data analysis and visualization: Use Python to process data and display it through the web interface. 4. Machine Learning and AI: Python is used to build intelligent web applications. 5. Performance optimization: optimized through asynchronous programming, caching and code

Python is better than C in development efficiency, but C is higher in execution performance. 1. Python's concise syntax and rich libraries improve development efficiency. 2.C's compilation-type characteristics and hardware control improve execution performance. When making a choice, you need to weigh the development speed and execution efficiency based on project needs.


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Dreamweaver Mac version
Visual web development tools

WebStorm Mac version
Useful JavaScript development tools

Zend Studio 13.0.1
Powerful PHP integrated development environment