创建类
Python 类使用 class 关键字来创建。简单的类的声明可以是关键字后紧跟类名:
代码如下:
class ClassName(bases):
'class documentation string' #'类文档字符串'
class_suite #类体
实例化
通过类名后跟一对圆括号实例化一个类
代码如下:
mc = MyClass() # instantiate class 初始化类
‘int()'构造器
def __int__(self):
pass
注意:self类似Java的this关键字作用,它代码指向自身实例的引用
类属性
python的属性与Java和C++等面向对象语言不同,python的属性即包括了数据成员还包括函数元素,通过句点符号来访问.
特殊数据内建属性
C.name 类C的名字(字符串)
C.doc 类C的文档字符串
C.bases 类C的所有父类构成的元组
C.dict 类C的属性
C.module 类C定义所在的模块(1.5 版本新增)
C.class 实例C对应的类(仅新式类中)
特殊方法内建属性
dir():获得类属性或者实例属性名字列表.
静态变量属性
直接在class作用域定义
代码如下:
class C(object):
foo = 100
实例变量属性
python的实例属性与Java和C++等不同.在Java和C++中,实例属性必须首先声明/定义,而python实例属性是动态创建。设置实例的属性可以在实例创建后任意时间进行,也可以在能够访问实例的代码中进行。构造
器init()是设置这些属性的关键点之一。
代码如下:
def __init__(self, name, data):
self.name = name
self.data = "123'
注意:self类似Java的this关键字作用,它代码指向自身实例的引用
方法属性
分为实例方法和类方法.实例方法只属于一个实例;而类方法即属于类所有,也属于实例所有.
实例方法
代码如下:
class MyClass(object):
def myNoActionMethod(self):
pass
注意:self类似Java的this关键字作用,它代码指向自身实例的引用
静态方法
静态方法是类级别的方法,不需要实例化类就可以直接调用.有两种方法定义
●装饰器(常用)
代码如下:
@staticmethod
def foo():
print 'call static method'
●内建函数
代码如下:
def foo():
print 'call static method'
foo = staticmethod(foo) #静态方法
类方法
静态方法是类级别的方法, 与静态方法不同的是,它必须显示传入cls类参数;而且如果还需要调用类中其他的静态方法,或者类方法的函数, 要定义成类方法. 与静态方法类似,也有两种方法定义.
●装饰器(常用)
代码如下:
@classmethod
def bar(cls):
print 'call class method and access static varible(staticVar): ', cls.staticVar
●内建函数
代码如下:
def bar(cls):
print 'call class method and access static varible(staticVar): ', cls.staticVar
bar = classmethod(bar) #类方法
实例详解
代码如下:
#!/usr/bin/python
#coding=utf-8
class Target(): #定义类Target
'This is Target definition' #定义__doc__属性
staticVar = 'v1.0' #定义静态变量
def __init__(self, name = 'default', data = 0): #定义构造函数
self.name = name #实例变量
self.data = data #实例变量
print "init instance"
def main():
print "this is a test function"
'''
可以用装饰器定义静态方法
@staticmethod
def foo():
print 'call static method'
'''
def foo():
print 'call static method'
foo = staticmethod(foo) #静态方法
'''
可以用装饰器定义类方法
@classmethod
def bar(cls):
print 'call class method and access static varible(staticVar): ', cls.staticVar
'''
def bar(cls):
print 'call class method and access static varible(staticVar): ', cls.staticVar
bar = classmethod(bar) #类方法
#只有调用本模块的时候main()方法才生效
if __name__ == '__main__':
main()
#实例化
target = Target('aaa', 123)
print 'name is: ', target.name
print 'data is: ', target.data
#打印__doc__属性
print 'target.__doc__ is: ', target.__doc__
#打印类__dict__属性
print 'Target.__dict__ is: ', Target.__dict__
#打印静态变量
print 'staticVar is: ', Target.staticVar
#打印内建函数dir()
print 'dir() is: ', dir(Target)
#调用静态方法
Target.foo()
#调用类方法
Target.bar()
输出
代码如下:
this is a test function
init instance
name is: aaa
data is: 123
target.__doc__ is: This is Target definition
Target.__dict__ is: {'__module__': '__main__', 'foo':
staticVar is: v1.0
dir() is: ['__doc__', '__init__', '__module__', 'bar', 'foo', 'main', 'staticVar']
call static method
call class method and access static varible(staticVar): v1.0

TomergelistsinPython,youcanusethe operator,extendmethod,listcomprehension,oritertools.chain,eachwithspecificadvantages:1)The operatorissimplebutlessefficientforlargelists;2)extendismemory-efficientbutmodifiestheoriginallist;3)listcomprehensionoffersf

In Python 3, two lists can be connected through a variety of methods: 1) Use operator, which is suitable for small lists, but is inefficient for large lists; 2) Use extend method, which is suitable for large lists, with high memory efficiency, but will modify the original list; 3) Use * operator, which is suitable for merging multiple lists, without modifying the original list; 4) Use itertools.chain, which is suitable for large data sets, with high memory efficiency.

Using the join() method is the most efficient way to connect strings from lists in Python. 1) Use the join() method to be efficient and easy to read. 2) The cycle uses operators inefficiently for large lists. 3) The combination of list comprehension and join() is suitable for scenarios that require conversion. 4) The reduce() method is suitable for other types of reductions, but is inefficient for string concatenation. The complete sentence ends.

PythonexecutionistheprocessoftransformingPythoncodeintoexecutableinstructions.1)Theinterpreterreadsthecode,convertingitintobytecode,whichthePythonVirtualMachine(PVM)executes.2)TheGlobalInterpreterLock(GIL)managesthreadexecution,potentiallylimitingmul

Key features of Python include: 1. The syntax is concise and easy to understand, suitable for beginners; 2. Dynamic type system, improving development speed; 3. Rich standard library, supporting multiple tasks; 4. Strong community and ecosystem, providing extensive support; 5. Interpretation, suitable for scripting and rapid prototyping; 6. Multi-paradigm support, suitable for various programming styles.

Python is an interpreted language, but it also includes the compilation process. 1) Python code is first compiled into bytecode. 2) Bytecode is interpreted and executed by Python virtual machine. 3) This hybrid mechanism makes Python both flexible and efficient, but not as fast as a fully compiled language.

Useaforloopwheniteratingoverasequenceorforaspecificnumberoftimes;useawhileloopwhencontinuinguntilaconditionismet.Forloopsareidealforknownsequences,whilewhileloopssuitsituationswithundeterminediterations.

Pythonloopscanleadtoerrorslikeinfiniteloops,modifyinglistsduringiteration,off-by-oneerrors,zero-indexingissues,andnestedloopinefficiencies.Toavoidthese:1)Use'i


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

SAP NetWeaver Server Adapter for Eclipse
Integrate Eclipse with SAP NetWeaver application server.

MinGW - Minimalist GNU for Windows
This project is in the process of being migrated to osdn.net/projects/mingw, you can continue to follow us there. MinGW: A native Windows port of the GNU Compiler Collection (GCC), freely distributable import libraries and header files for building native Windows applications; includes extensions to the MSVC runtime to support C99 functionality. All MinGW software can run on 64-bit Windows platforms.

Zend Studio 13.0.1
Powerful PHP integrated development environment

ZendStudio 13.5.1 Mac
Powerful PHP integrated development environment

mPDF
mPDF is a PHP library that can generate PDF files from UTF-8 encoded HTML. The original author, Ian Back, wrote mPDF to output PDF files "on the fly" from his website and handle different languages. It is slower than original scripts like HTML2FPDF and produces larger files when using Unicode fonts, but supports CSS styles etc. and has a lot of enhancements. Supports almost all languages, including RTL (Arabic and Hebrew) and CJK (Chinese, Japanese and Korean). Supports nested block-level elements (such as P, DIV),
