


There are two ways to find data, sequential search and binary search. Sequential search works on lists with randomly arranged elements. Binary search works on a sorted list of elements. Binary search is more efficient, but it must be a sorted set of list elements.
1: Sequential search
Sequential search is to judge the list elements one by one starting from the first element of the list until the desired result is found, or the desired element is not found until the end of the list.
The code is as follows:
function seqSearch(data,arr) { for(var i = 0; i < arr.length; ++i) { if(arr[i] == data) { return true; } } return false; }
We can also return the sequential search function that matches the position of the element. The code is as follows:
function seqSearch(data,arr) { for(var i = 0; i < arr.length; ++i) { if(arr[i] == data) { return i; } } return -1; }
Two: Find the minimum and maximum values
The algorithm for finding the minimum value in an array is as follows:
1. Assign the first element of the array to a variable and use this variable as the minimum value.
2. Start traversing the array, starting from the second element and comparing it with the current minimum value.
3. If the value of the current element is less than the current minimum value, set the current element to the new minimum value.
4. Move to the next element and repeat step 3.
5. When the program ends, what is stored in this variable is the minimum value.
The code is as follows:
function findMin(arr) { var min = arr[0]; for(var i = 1; i < arr.length; ++i) { if(arr[i] < min) { min = arr[i]; } } return min; }
The algorithm for finding the maximum value is similar to the minimum value above. First, set the first element in the array to the maximum value, and then loop to compare each remaining element of the array with the current maximum value. If the value of the current element is greater than the current Maximum value, then assign the value of the element to the maximum value. The code is as follows:
function findMax(arr) { var max = arr[0]; for(var i = 1; i < arr.length; ++i) { if(arr[i] > max) { max = arr[i]; } } return max; }
Three: Binary search method.
If the data you are looking for is ordered, the binary search algorithm is more efficient than the sequential search algorithm. The basic principle of the binary search algorithm is as follows:
1. Set the first position of the array to the lower boundary (0).
2. Set the position of the last element of the array to the upper boundary (the length of the array minus 1).
3. If the lower boundary is equal to or smaller than the upper boundary, do the following:
A. Set the midpoint to (upper boundary plus lower boundary) divided by 2.
B. If the element at the midpoint is smaller than the query value, set the lower boundary to the subscript of the midpoint element plus 1.
C. If the element at the midpoint is greater than the query value, set the upper boundary to the subscript of the midpoint element minus 1.
D. Otherwise, the midpoint element is the data to be found and can be returned.
The code is as follows:
// 二分查找算法 function binSearch(data,arr) { var lowerBound = 0; var upperBound = arr.length - 1; while(lowerBound <= upperBound) { var mid = Math.floor((upperBound + lowerBound)/2); if(arr[mid] < data) { lowerBound = mid + 1; }else if(arr[mid] > data) { upperBound = mid - 1; }else { return mid; } } return -1; } // 快速排序 function qSort(list) { if(list.length == 0) { return []; } // 存储小于基准值的值 var left = []; // 存储大于基准值的值 var right = []; var pivot = list[0]; for(var i = 1; i < list.length; i++) { if(list[i] < pivot) { left.push(list[i]); }else { right.push(list[i]) } } return qSort(left).concat(pivot,qSort(right)); } // 测试代码 var numbers = [0,9,1,8,7,6,2,3,5,4]; var list = qSort(numbers); console.log(binSearch(6,list));
4: Calculate the number of repetitions;
When the binary search algorithm binSearch() function finds a certain value, if there are other same values in the data set, then the function will be positioned near similar values. In other words, other same values may appear. The left or right side of the value found.
Then our simplest solution is to write two loops, one that simultaneously traverses the data set downward or to the left, counting the number of repetitions; and then, traversing upward or to the right, counting the number of repetitions. The code is as follows:
// 计算重复次数 function count(data,arr) { var count = 0; var arrs = []; var position = binSearch(data,arr); if(position > -1) { ++count; arrs.push({"index":count}); for(var i = position -1; i > 0; --i) { if(arr[i] == data) { ++count; arrs.push({"index":count}); }else { break; } } for(var i = position + 1; i < arr.length; ++i) { if(arr[i] == data) { ++count; arrs.push({"index":count}); }else { break; } } } return arrs; } // 测试重复次数的代码 var arr = [0,1,1,1,2,3,4,5,6,7,8,9]; var arrs = count(1,arr); console.log(arrs); console.log(arrs.length);
As shown below:

二叉树是计算机科学中常见的数据结构,也是Java编程中常用的一种数据结构。本文将详细介绍Java中的二叉树结构。一、什么是二叉树?在计算机科学中,二叉树是一种树形结构,每个节点最多有两个子节点。其中,左侧子节点比父节点小,右侧子节点则比父节点大。在Java编程中,常用二叉树表示排序,搜索以及提高对数据的查询效率。二、Java中的二叉树实现在Java中,二叉树

想了解更多关于开源的内容,请访问:51CTO开源基础软件社区https://ost.51cto.com一、栈的概念栈由一系列对象对象组织的一个集合,这些对象的增加和删除操作都遵循一个“后进先出”(LastInFirstOut,LIFO)的原则。在任何时刻只能向栈中插入一个对象,但只能取得或者删除只能在栈顶进行。比如由书构成的栈,唯一露出封面的书就是顶部的那本,为了拿到其他的书,只能移除压在上面的书,如图:栈的实际应用实际上很多应用程序都会用到栈,比如:网络浏览器将最近浏览

PHP是一种广泛使用的脚本语言,被广泛用于Web开发,服务器端编程以及命令行编程等。随着PHP不断更新和发展,它也日益成为一个更强大的编程工具,为用户提供了更多的功能和更多的工具来开发高质量的应用程序。其中,数据结构是一个非常重要的领域,一种有效的数据结构可以大大提高程序的性能和可读性。在这篇文章中,我们将讨论PHP8中支持的新数据结构,这些新的数据结构将让

如何解决Java中遇到的代码性能优化问题随着现代软件应用的复杂性和数据量的增加,对于代码性能的需求也变得越来越高。在Java开发中,我们经常会遇到一些性能瓶颈,如何解决这些问题成为了开发者们关注的焦点。本文将介绍一些常见的Java代码性能优化问题,并提供一些解决方案。一、避免过多的对象创建和销毁在Java中,对象的创建和销毁是需要耗费资源的。因此,当一个方法

随着计算机科学的不断发展,数据结构与算法成为了计算机科学领域中最为基础、重要的模块。数据结构是一种组织和存储数据的方式,它是解决问题的基础。算法则是计算机科学的核心,它是指在计算机程序中解决问题的方法和技术。Java作为一种广泛应用的编程语言,其自带的数据结构和算法库是非常强大的,赋予了开发人员更多的力量。一、数据结构Java中提供了多种数据结构,包括数组

go语言数据结构有四大类:1、基础类型,包括整型(有符号和无符号整数)、浮点数、复数、字符串(由不可变的字节序列构成)、布尔值(只有true和false两个值);2、聚合类型,包括数组、结构体(是由任意个任意类型的变量组合在一起的数据类型);3、引用类型,包括指针、slice(是一个拥有相同元素的可变长度序列)、map、function、channel;4、接口类型。

Go语言是一种支持并发编程的语言,它的内置数据结构非常丰富,可以满足不同场景下的需求。Go语言中实现数据结构的方式有多种,包括数组、切片、字典、链表和树。数组和切片是最基础的数据结构,它们都可以存储一组相同类型的元素。不同之处在于数组的长度是固定的,而切片则可以动态扩展。Go语言中使用数组和切片可以快速创建数据结构,例如著名的排序算法中的快速排序和归并排序都

c语言中,数据结构是指相互之间存在一种或多种特定关系的数据元素的集合,它是计算机存储、组织数据的方式;常见数据结构有:线性数据结构(数组、链表、栈、队列和线性表)、树形结构(二叉树、完全二叉树、二叉查找树、堆)、图形结构(有向图和无向图)。


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

SublimeText3 English version
Recommended: Win version, supports code prompts!

SAP NetWeaver Server Adapter for Eclipse
Integrate Eclipse with SAP NetWeaver application server.

WebStorm Mac version
Useful JavaScript development tools

SublimeText3 Linux new version
SublimeText3 Linux latest version

MinGW - Minimalist GNU for Windows
This project is in the process of being migrated to osdn.net/projects/mingw, you can continue to follow us there. MinGW: A native Windows port of the GNU Compiler Collection (GCC), freely distributable import libraries and header files for building native Windows applications; includes extensions to the MSVC runtime to support C99 functionality. All MinGW software can run on 64-bit Windows platforms.
