Home  >  Article  >  Backend Development  >  How to optimize C++ I/O operations to improve performance?

How to optimize C++ I/O operations to improve performance?

WBOY
WBOYOriginal
2024-05-08 17:21:01765browse

To improve C I/O performance, several approaches can be taken: Use buffered I/O to group data to reduce the number of disk accesses. Use the mmap() system call to map files directly into memory to avoid frequent disk accesses. Use parallel I/O to perform I/O operations simultaneously on multiple threads or processes to increase throughput.

如何优化C++ I/O操作以提高性能?

How to optimize C I/O operations to improve performance

I/O operations are critical to the performance of your application. In C, there are several ways to optimize I/O operations to improve performance.

1. Using Buffered I/O

Buffered I/O involves grouping data into large chunks and then writing or reading them from disk. This reduces the number of disk accesses, thereby improving performance.

#include <iostream>
#include <fstream>
#include <vector>

int main() {
  std::vector<int> data(1000000);
  std::ofstream file("data.bin", std::ios::binary);
  // 缓冲 1 MB 的数据
  file.rdbuf()->pubsetbuf(nullptr, 1024 * 1024);

  // 写入数据
  file.write((char*)&data[0], data.size() * sizeof(int));
  file.close();

  return 0;
}

2. Using mmap()

The mmap() system call allows you to map files directly into memory. This avoids frequent disk accesses, thus improving performance.

#include <sys/mman.h>
#include <fcntl.h>

int main() {
  // 打开文件
  int fd = open("data.bin", O_RDWR);
  // 将文件映射到内存
  void* data = mmap(nullptr, 1000000 * sizeof(int), PROT_READ | PROT_WRITE, MAP_SHARED, fd, 0);
  
  // 操作数据
  ...

  // 取消映射
  munmap(data, 1000000 * sizeof(int));
  close(fd);

  return 0;
}

3. Using Parallel I/O

Parallel I/O involves performing I/O operations on multiple threads or processes simultaneously. This can improve throughput and reduce overall execution time.

#include <thread>
#include <vector>

int main() {
  std::vector<std::thread> threads;
  for (int i = 0; i < 4; i++) {
    threads.emplace_back([] {
      // 执行 I/O 操作
    });
  }

  for (auto& thread : threads) {
    thread.join();
  }

  return 0;
}

Practical case

The following is a practical case using C to optimize I/O operations. This program reads and writes large amounts of data from a file:

#include <iostream>
#include <fstream>
#include <vector>
#include <chrono>

using namespace std;

int main() {
  // 数据量
  const int dataSize = 1000000;

  // 使用缓冲 I/O
  {
    vector<int> data(dataSize);
    ofstream file("data.bin", ios::binary);
    file.rdbuf()->pubsetbuf(nullptr, 1024 * 1024);

    // 记录时间
    auto start = chrono::high_resolution_clock::now();
    // 写入数据
    file.write((char*)&data[0], data.size() * sizeof(int));
    auto end = chrono::high_resolution_clock::now();

    // 计算执行时间
    auto duration = chrono::duration_cast<chrono::milliseconds>(end - start);
    cout << "Buffered I/O duration: " << duration.count() << " ms" << endl;
  }

  // 使用 mmap()
  {
    vector<int> data(dataSize);
    int fd = open("data.bin", O_RDWR);
    void* dataPtr = mmap(nullptr, dataSize * sizeof(int), PROT_READ | PROT_WRITE, MAP_SHARED, fd, 0);

    // 记录时间
    auto start = chrono::high_resolution_clock::now();
    // 写入数据
    memcpy(dataPtr, &data[0], data.size() * sizeof(int));
    auto end = chrono::high_resolution_clock::now();

    // 取消映射
    munmap(dataPtr, dataSize * sizeof(int));
    close(fd);

    // 计算执行时间
    auto duration = chrono::duration_cast<chrono::milliseconds>(end - start);
    cout << "mmap() duration: " << duration.count() << " ms" << endl;
  }

  return 0;
}

Run this program and you'll notice that using mmap() is many times faster than buffered I/O.

The above is the detailed content of How to optimize C++ I/O operations to improve performance?. For more information, please follow other related articles on the PHP Chinese website!

Statement:
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn